Il Nuovo Cimento B (1971-1996)

, Volume 111, Issue 3, pp 363–378 | Cite as

A method for calculating the Jost function for analytic potentials

  • S. A. Rakityansky
  • S. A. Sofianos
  • K. Amos


A combination of the variable-constant and complex coordinate rotation methods is used to solve the two-body Schrödinger equation. The latter is replaced by a system of linear first-order differential equations, which enables one to perform direct calculation of the Jost function for all complex momenta of physical interest, including the spectral points corresponding to bound and resonance states. Explicit forms of the equations, appropriate for central short-range and Coulombtailed potentials, are given. Within the proposed method, the scattering, bound, virtual, and resonance state problems can be treated in a unified way. The effectiveness of the method is demonstrated by a numerical example.


PACS 03.65.Nk Nonrelativistic scattering theory PACS 03.65.Ge Solutions of wave equations: bound states PACS 21.45 Few-body systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sitenko A. G.,Scattering Theory (Springer-Verlag, Heidelberg) 1991.CrossRefGoogle Scholar
  2. [2]
    Newton R. G.,Scattering Theory of Waves and Particles (McGraw-Hill, New York, N.Y.) 1967.Google Scholar
  3. [3]
    Pupyshev V. V. andRakityansky S. A.,Z. Phys. A,348 (1994) 227.ADSCrossRefGoogle Scholar
  4. [4]
    Calogero F.,Variable Phase Approach to Potential Scattering (Academic Press, New York, N.Y.) 1967.Google Scholar
  5. [5]
    Mathews J. andWalker R. L.,Mathematical Methods of Physics (W. A. Benjamin, Inc., New York, N.Y.) 1964.Google Scholar
  6. [6]
    The entire special issue ofInt. J. Quantum Chem.,14 (4) (1978), is devoted to the complex-coordinate method. See also the review byHo Y. K.,Phys. Rep.,99 (1983) 1.Google Scholar
  7. [7]
    Kukulin V. I., Krasnopolsky V. M. andHoraček J.,Theory of Resonances (Kluwer Academic Publishers, Dordrecht) 1988.MATHGoogle Scholar
  8. [8]
    Abramowitz M. andStegun A. (Editors),Handbook of Mathematical Functions (NBS, Washington) 1964.MATHGoogle Scholar
  9. [9]
    Taylor J. R.,Scattering Theory (John Wiley and Sons, Inc., New York, N.Y.) 1972.Google Scholar
  10. [10]
    Afnan I. R., preprint FIAS-R-213, the Flinders University of South Australia, 1990.Google Scholar
  11. [11]
    Goldberger M. andWatson K. M.,Collision Theory (Wiley, New York, N.Y.) 1964.MATHGoogle Scholar
  12. [12]
    Brown G. E. andJackson A. D.,The Nucleon-Nucleon Interaction (North-Holland Publishing Company, Amsterdam) 1976.Google Scholar
  13. [13]
    Pupyshev V. V. andRakityansky S. A., Communication of JINR, E4-91-418, Dubna, 1991.Google Scholar
  14. [14]
    Fabre de la Ripelle M.,Ann. Phys. (N.Y.),147 (1983) 281.MathSciNetADSCrossRefMATHGoogle Scholar
  15. [15]
    Baye D.,Phys. Rev. Lett.,58 (1985) 2738.ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • S. A. Rakityansky
    • 1
  • S. A. Sofianos
    • 1
  • K. Amos
    • 1
  1. 1.Physics DepartmentUniversity of South AfricaPretoriaSouth Africa

Personalised recommendations