Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 111, Issue 3, pp 327–330 | Cite as

Quantum field theory of the Universe in the Kantowski-Sachs space-time

  • You-Gen Shen
  • Zhen-Qiang Tan
Article
  • 28 Downloads

Summary

In this paper, the quantum field theory of the Universe in the Kantowski-Sachs space-time is studied. We apply an analogue of proceeding in quantum field theory in curved space-time to the Kantowski-Sachs space-time, and obtain the wave function of the Universe satisfied the Wheeler-De Witt equation. Regarding the wave function as a universe field in the minisuperspace, we can not only overcome the difficulty of the probabilistic interpretation in quantum cosmology, but also come to the conclusion that there is multiple production of universes. The average number of the produced universes from «nothing» is calculated. The distribution of created universes is given. We find that it is the Planckian distribution.

Keywords

PACS 98.80.Dr Theoretical cosmology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hartle J. B. andHawking S. W.,Phys. Rev. D,28 (1983) 2960.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    Vilenkin A.,Phys. Lett. B,117 (1982) 28.ADSCrossRefGoogle Scholar
  3. [3]
    Vilenkin A.,Phys. Rev. D,37 (1988) 888.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Halliwell, J. J., preprint, NSF-ITP-88-131.Google Scholar
  5. [5]
    Coleman S.,Nucl. Phys. B,307 (1988) 864.ADSCrossRefGoogle Scholar
  6. [6]
    Klebanov I., Susskind L. andBanks T.,Nucl. Phys. B,317 (1989) 665.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Giddings S. B. andStrominger A.,Nucl. Phys. B,321 (1989) 481.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Hosoya A. andMorikawa M.,Phys. Rev. D,39 (1989) 1123.ADSCrossRefGoogle Scholar
  9. [9]
    Banks T.,Nucl. Phys. B,309 (1988) 493.ADSCrossRefGoogle Scholar
  10. [10]
    Duncan M. J., preprint, UMN-TH-916/90.Google Scholar
  11. [11]
    Fischler W. et al., Nucl. Phys. B.,327 (1989) 157.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Peley Y.,Class. Quantum Grav.,8 (1991) 827.ADSCrossRefGoogle Scholar
  13. [13]
    Gerlach U. H.,Phys. Rev. D.,38 (1988) 514.MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    Gerlach U. H.,Phys. Rev. D.,40 (1989) 1037.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Garay L. J.,Phys. Rev. D,48 (1993) 1710.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    Shen Y. G., Cheng Z. G. andDing H. G.,Chin. Phys. Lett.,11 (1994) 193.ADSCrossRefGoogle Scholar
  17. [17]
    Kantowski R. andSachs R. K.,J. Math. Phys.,7 (1966) 443.MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    Leflemme R. andShellard E. P. S.,Phys. Rev. D,35 (1987) 2315.MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    Campbell L. M. andGaray L. J.,Phys. Lett. B,254 (1991) 49.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • You-Gen Shen
    • 1
  • Zhen-Qiang Tan
    • 1
  1. 1.CCAST (World Laboratory)BeijingPRC

Personalised recommendations