Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 110, Issue 10, pp 1137–1152 | Cite as

Space-time covariant form of Ashtekar’s constraints

  • Giampiero Esposito
  • Gabriele Gionti
  • Cosimo Stornaiolo
Article

Summary

The Lagrangian formulation of classical field theories and, in particular, general relativity leads to a coordinate-free, fully covariant analysis of these constrained systems. This paper applies multisymplectic techniques to obtain the analysis of Palatini and self-dual gravity theories as constrained systems, which have been studied so far in the Hamiltonian formalism. The constraint equations are derived while paying attention to boundary terms, and the Hamiltonian constraint turns out to be linear in the multimomenta. The equivalence with Ashtekar’s formalism is also established. The whole constraint analysis, however, remains covariant in that the multimomentum map is evaluated onany space-like hypersurface. This study is motivated by the non-perturbative quantization programme of general relativity.

Keywords

PACS 04.20.Cv Fundamental problems and general formalism PACS 04.60.Ds Canonical quantization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dirac P. A. M.,Lectures on Quantum Mechancis (Yeshiva University, New York, N.Y.) 1964.Google Scholar
  2. [2]
    Dirac P. A. M.,Lectures on Quantum Field Theory, Belfer Graduate School of Science,Monographs Series, No. 3 (Yeshiva University, New York, N.Y.) 1966.MATHGoogle Scholar
  3. [3]
    Hanson A., Regge T. andTeitelboim C.,Constrained Hamiltonian Systems (Accademia dei Lincei, Rome) 1976.Google Scholar
  4. [4]
    Marmo G., Mukunda N. andSamuel J.,Riv. Nuovo Cimento,6 (1983) 1.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Esposito G.,Quantum Gravity, Quantum Cosmology and Lorentzian Geometries, second corrected and enlarged editionLect. Notes Phys., New Ser. m: Monographs, Vol. m12, (Springer, Berlin) 1994.CrossRefMATHGoogle Scholar
  6. [6]
    De Witt B. S.,Phys. Rev.,160 (1967) 1113.ADSCrossRefGoogle Scholar
  7. [7]
    Ashtekar A.,Phys. Rev. Lett.,57 (1986) 2244.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Ashtekar A.,Phys. Rev. D,36 (1987) 1587.MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Ashtekar A.,New Perspectives in Canonical Gravity (Bibliopolis, Naples) 1988.MATHGoogle Scholar
  10. [10]
    Rovelli C. andSmolin L.,Phys. Rev. Lett.,61 (1988) 1155.MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    Rovelli C. andSmolin L.,Nucl. Phys. B,331 (1990) 80.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Ashtekar A., Rovelli C. andSmolin L.,Phys. Rev. D,44 (1991) 1740.MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Ashtekar A.,Lectures on Non-Perturbative Canonical Gravity (World Scientific, Singapore) 1991.CrossRefMATHGoogle Scholar
  14. [14]
    Goldberg J. N., Lewandowski J. andStornaiolo C.,Commun. Math. Phys.,148 (1992) 377.MathSciNetADSCrossRefMATHGoogle Scholar
  15. [15]
    Ashtekar A. andIsham C. J.,Class. Quantum Grav.,9 (1992) 1433.MathSciNetADSCrossRefMATHGoogle Scholar
  16. [16]
    Sniatycki J.,On the canonical formulation of general relativity, inProc. Journées Relativistes (Faculté des Sciences, Caen) 1970.Google Scholar
  17. [17]
    Szczyrba W.,Commun. Math. Phys.,51 (1976) 163.MathSciNetADSCrossRefMATHGoogle Scholar
  18. [18]
    Novotny J.,On the geometric foundations of the Lagrange formulation of general relativity, inDifferential Geometry, edited byGy. Soos andJ. Szenthe,Eds. Colloq. Math. Soc. J. Bolyai,31 (North-Holland, Amsterdam) 1982.Google Scholar
  19. [19]
    Hawking S. W.,The path-integral approach to quantum gravity, inGeneral Relativity, an Einstein Centenary Survey, edited byS. W. Hawking andW. Israel (Cambridge University Press, Cambridge) 1979, p. 746.Google Scholar
  20. [20]
    Esposito G., Gionti G., Marmo G. andStornaiolo C.,Nuovo Cimento B,109 (1994) 1259.ADSCrossRefGoogle Scholar
  21. [21]
    Mendella G., Marmo G. andTulczyjew W. J.,J. Phys. A,28 (1995) 149.MathSciNetADSCrossRefMATHGoogle Scholar
  22. [22]
    Smolin L.,Class. Quantum Grav.,9 (1992) 883.MathSciNetADSCrossRefMATHGoogle Scholar
  23. [23]
    Gotay M. J., Isenberg J., Marsden J. E. andMontgomery R.,Momentum Mappings and the Hamiltonian Structure of Classical Field Theories with Constraints (Springer, Berlin) in press.Google Scholar
  24. [24]
    Gionti G.,Constraints’ Theory and General Relativity, Thesis, University of Naples (1993).Google Scholar
  25. [25]
    Goldberg J. N.,Found. Phys.,14 (1984) 1211.MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    Schouten J. A.,Ricci-Calculus (Springer, Berlin) 1954.CrossRefGoogle Scholar
  27. [27]
    Bishop R. L. andGoldberg S. I.,Tensor Analysis on Manifolds (Dover, New York, N.Y.) 1980;Capovilla R., Dell J. andJacobson T.,Class. Quantum Grav.,8 (1991) 59.MATHGoogle Scholar
  28. [28]
    Samuel J.,Pramana J. Phys.,28 (1987) L429.ADSCrossRefGoogle Scholar
  29. [29]
    Jacobson T. andSmolin L.,Phys. Lett. B,196 (1987) 39.MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    Jacobson T. andSmolin L.,Class. Quantum Grav.,5 (1988) 583.MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    Romano J.,Gen. Rel. Grav.,25 (1993) 759.MathSciNetADSCrossRefMATHGoogle Scholar
  32. [32]
    Morales-Técotl H. A. andEsposito G.,Nuovo Cimento B,109 (1994) 973.ADSCrossRefGoogle Scholar
  33. [33]
    Penrose R. andRindler W.,Spinors and Space-Time, Vol. II (Cambridge University Press, Cambridge) 1986;Esposito G.:Complex General Relativity, Fundamental Theories of Physics, Vol.69 (Kluwer, Dordrecht) 1995.CrossRefGoogle Scholar
  34. [34]
    Sniatycki J.,Rep. Math. Phys.,19 (1984) 407.MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    Marsden J. E., Montgomery R., Morrison P. J. andThompson W. B.,Ann. Phys. (N.Y.),169 (1986) 29.MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    Sniatycki J.,Geometric Quantization and Quantum Mechanics (Springer, Berlin) 1980.CrossRefMATHGoogle Scholar
  37. [37]
    Woodhouse N. M. J.,Geometric Quantization (Oxford University Press, Oxford) 1980.MATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • Giampiero Esposito
    • 1
    • 2
  • Gabriele Gionti
    • 3
  • Cosimo Stornaiolo
    • 1
    • 2
  1. 1.INFNSezione di Napoli-Mostra d’OltremareNapoliItaly
  2. 2.Dipartimento di Scienze FisicheNapoliItaly
  3. 3.SISSATriesteItaly

Personalised recommendations