Skip to main content
Log in

Space-time covariant form of Ashtekar’s constraints

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The Lagrangian formulation of classical field theories and, in particular, general relativity leads to a coordinate-free, fully covariant analysis of these constrained systems. This paper applies multisymplectic techniques to obtain the analysis of Palatini and self-dual gravity theories as constrained systems, which have been studied so far in the Hamiltonian formalism. The constraint equations are derived while paying attention to boundary terms, and the Hamiltonian constraint turns out to be linear in the multimomenta. The equivalence with Ashtekar’s formalism is also established. The whole constraint analysis, however, remains covariant in that the multimomentum map is evaluated onany space-like hypersurface. This study is motivated by the non-perturbative quantization programme of general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dirac P. A. M.,Lectures on Quantum Mechancis (Yeshiva University, New York, N.Y.) 1964.

    Google Scholar 

  2. Dirac P. A. M.,Lectures on Quantum Field Theory, Belfer Graduate School of Science,Monographs Series, No. 3 (Yeshiva University, New York, N.Y.) 1966.

    MATH  Google Scholar 

  3. Hanson A., Regge T. andTeitelboim C.,Constrained Hamiltonian Systems (Accademia dei Lincei, Rome) 1976.

    Google Scholar 

  4. Marmo G., Mukunda N. andSamuel J.,Riv. Nuovo Cimento,6 (1983) 1.

    Article  MathSciNet  Google Scholar 

  5. Esposito G.,Quantum Gravity, Quantum Cosmology and Lorentzian Geometries, second corrected and enlarged editionLect. Notes Phys., New Ser. m: Monographs, Vol. m12, (Springer, Berlin) 1994.

    Book  MATH  Google Scholar 

  6. De Witt B. S.,Phys. Rev.,160 (1967) 1113.

    Article  ADS  Google Scholar 

  7. Ashtekar A.,Phys. Rev. Lett.,57 (1986) 2244.

    Article  MathSciNet  ADS  Google Scholar 

  8. Ashtekar A.,Phys. Rev. D,36 (1987) 1587.

    Article  MathSciNet  ADS  Google Scholar 

  9. Ashtekar A.,New Perspectives in Canonical Gravity (Bibliopolis, Naples) 1988.

    MATH  Google Scholar 

  10. Rovelli C. andSmolin L.,Phys. Rev. Lett.,61 (1988) 1155.

    Article  MathSciNet  ADS  Google Scholar 

  11. Rovelli C. andSmolin L.,Nucl. Phys. B,331 (1990) 80.

    Article  MathSciNet  ADS  Google Scholar 

  12. Ashtekar A., Rovelli C. andSmolin L.,Phys. Rev. D,44 (1991) 1740.

    Article  MathSciNet  ADS  Google Scholar 

  13. Ashtekar A.,Lectures on Non-Perturbative Canonical Gravity (World Scientific, Singapore) 1991.

    Book  MATH  Google Scholar 

  14. Goldberg J. N., Lewandowski J. andStornaiolo C.,Commun. Math. Phys.,148 (1992) 377.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Ashtekar A. andIsham C. J.,Class. Quantum Grav.,9 (1992) 1433.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Sniatycki J.,On the canonical formulation of general relativity, inProc. Journées Relativistes (Faculté des Sciences, Caen) 1970.

    Google Scholar 

  17. Szczyrba W.,Commun. Math. Phys.,51 (1976) 163.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Novotny J.,On the geometric foundations of the Lagrange formulation of general relativity, inDifferential Geometry, edited byGy. Soos andJ. Szenthe,Eds. Colloq. Math. Soc. J. Bolyai,31 (North-Holland, Amsterdam) 1982.

    Google Scholar 

  19. Hawking S. W.,The path-integral approach to quantum gravity, inGeneral Relativity, an Einstein Centenary Survey, edited byS. W. Hawking andW. Israel (Cambridge University Press, Cambridge) 1979, p. 746.

    Google Scholar 

  20. Esposito G., Gionti G., Marmo G. andStornaiolo C.,Nuovo Cimento B,109 (1994) 1259.

    Article  ADS  Google Scholar 

  21. Mendella G., Marmo G. andTulczyjew W. J.,J. Phys. A,28 (1995) 149.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Smolin L.,Class. Quantum Grav.,9 (1992) 883.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Gotay M. J., Isenberg J., Marsden J. E. andMontgomery R.,Momentum Mappings and the Hamiltonian Structure of Classical Field Theories with Constraints (Springer, Berlin) in press.

  24. Gionti G.,Constraints’ Theory and General Relativity, Thesis, University of Naples (1993).

  25. Goldberg J. N.,Found. Phys.,14 (1984) 1211.

    Article  MathSciNet  ADS  Google Scholar 

  26. Schouten J. A.,Ricci-Calculus (Springer, Berlin) 1954.

    Book  Google Scholar 

  27. Bishop R. L. andGoldberg S. I.,Tensor Analysis on Manifolds (Dover, New York, N.Y.) 1980;Capovilla R., Dell J. andJacobson T.,Class. Quantum Grav.,8 (1991) 59.

    MATH  Google Scholar 

  28. Samuel J.,Pramana J. Phys.,28 (1987) L429.

    Article  ADS  Google Scholar 

  29. Jacobson T. andSmolin L.,Phys. Lett. B,196 (1987) 39.

    Article  MathSciNet  ADS  Google Scholar 

  30. Jacobson T. andSmolin L.,Class. Quantum Grav.,5 (1988) 583.

    Article  MathSciNet  ADS  Google Scholar 

  31. Romano J.,Gen. Rel. Grav.,25 (1993) 759.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Morales-Técotl H. A. andEsposito G.,Nuovo Cimento B,109 (1994) 973.

    Article  ADS  Google Scholar 

  33. Penrose R. andRindler W.,Spinors and Space-Time, Vol. II (Cambridge University Press, Cambridge) 1986;Esposito G.:Complex General Relativity, Fundamental Theories of Physics, Vol.69 (Kluwer, Dordrecht) 1995.

    Book  Google Scholar 

  34. Sniatycki J.,Rep. Math. Phys.,19 (1984) 407.

    Article  MathSciNet  ADS  Google Scholar 

  35. Marsden J. E., Montgomery R., Morrison P. J. andThompson W. B.,Ann. Phys. (N.Y.),169 (1986) 29.

    Article  MathSciNet  ADS  Google Scholar 

  36. Sniatycki J.,Geometric Quantization and Quantum Mechanics (Springer, Berlin) 1980.

    Book  MATH  Google Scholar 

  37. Woodhouse N. M. J.,Geometric Quantization (Oxford University Press, Oxford) 1980.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, G., Gionti, G. & Stornaiolo, C. Space-time covariant form of Ashtekar’s constraints. Nuov Cim B 110, 1137–1152 (1995). https://doi.org/10.1007/BF02724605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02724605

Keywords

Navigation