Il Nuovo Cimento A (1965-1970)

, Volume 36, Issue 4, pp 354–366 | Cite as

TheK-matrix in the distorted-wave theory

  • A. B. Khalil


The form of theK-matrix in the distorted-wave (DW) theory is investigated. A simple, closed and exact formula for the tangent of the phase shifts in the framework of the DW theory is obtained. An improved DW Born approximation (IDWBA) based on this formula is suggested. The usefulness of this exact formula in Padé approximation is mentioned.

K-матрица в теории искаженных волн


Исследуется форма K-матрицы в теории искаженных волн. Получается простая, эамкнутая, точная формула для тангенса фаэового сдвига в рамках теории искаженных волн. На основе зтой формулы предлагается усоверщенствованное борновское приближение с испольэованием искаженных волн. Отмечается ценность зтой точной формулы в приближении Падз.


Si analizza la forma della matriceK nella teoria dell’onda distorta (DW). Si ottiene una formula semplice, chiusa ed esatta per la tangente degli spostamenti di fase nel contesto della teoria della DW. Si suggerisce un’approssimazione della DW di Born migliorata (IDWBA) basata su questa formula. Si accenna all’utilità di questa formula esatta nell’approssimazione di Padé.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    D. Bessis andM. Villani:Journ. Math. Phys.,16, 462 (1975).MATHMathSciNetCrossRefADSGoogle Scholar
  2. (2).
    D. Bessis, L. Epele andM. Villani:Journ. Math. Phys.,15, 2071 (1974).MathSciNetCrossRefADSGoogle Scholar
  3. (3).
    L. S. Rodberg andR. M. Thaler:Introduction to the Quantum Theory of Scattering (New York, N. Y., 1967), p. 241.Google Scholar
  4. (4).
    W. M. Frank, D. J. Land andR. M. Spector:Rev. Mod. Phys.,43, 36 (1971).MATHMathSciNetCrossRefADSGoogle Scholar
  5. (5).
    See the previous reference for the definitions.Google Scholar
  6. (6).
    H. Cornille:Nuovo Cimento,38, 1243 (1965).MathSciNetCrossRefGoogle Scholar
  7. (7).
    A. Messiah:Quantum Mechanics, Vol.2 (Amsterdam, 1962), p. 830.Google Scholar
  8. (8).
    M. L. Goldberg andH. Watson:Collision Theory (New York, N. Y., 1964), p. 213.Google Scholar
  9. (9).
    R. M. Spector:Journ. Math. Phys.,5, 1185 (1964).MATHMathSciNetCrossRefADSGoogle Scholar
  10. (10).
    See, for example,N. F. Mott andH. S. W. Massey:The Theory of Atomic Collisions (Oxford, 1952), p. 149.Google Scholar
  11. (11).
    N. F. Mott andH. S. W. Massey:The Theory of Atomic Collisions (Oxford, 1952), p. 148.Google Scholar
  12. (12).
    B. Giraud, A. B. Khalil andP. Moussa:Padé approximation for distorted waves, Saclay preprint DPh-T No. 76/57, to appear inPhys. Rev. C. Google Scholar
  13. (13).
    This remark is due toG. Turchetti.Google Scholar
  14. (14).
    L. Garside andW. Tobocman:Phys. Rev.,173, 1047 (1968).CrossRefADSGoogle Scholar
  15. (15).
    A. B. Khalil:Variational approach to the K and T matrices in the distorted-wave theory. Connection to the Padé approximants, in theFirst Pan African Congress of Mathematics, Rabat, 26–31 July 1976.Google Scholar

Copyright information

© Società Italiana di Fisica 1976

Authors and Affiliations

  • A. B. Khalil
    • 1
  1. 1.D.Ph.T., CEN SaclayGif-sur-YvetteFrance

Personalised recommendations