The Indian Journal of Pediatrics

, Volume 56, Issue 6, pp 693–706 | Cite as

The molecular basis of thalassemias

  • Suthat Fucharoen
  • Pranee Winichagoon
Symposium : Hematology/ oncology


Codon Thalassemia Biliary Atresia Globin Gene Single Base Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WHO Working Group. Community control of hereditary anaemias: memorandum from a WHO Meeting.Bull WHO 1983; 61 : 63–80.Google Scholar
  2. 2.
    Dcisscroth A, Nicnhuis A, Turner P et al. Localization of the human α-globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization.Cell 1977; 12: 205–218.CrossRefGoogle Scholar
  3. 3.
    Jeffreys AJ, Craig IW, Franckc U. Localization of the Gλ-, Aλ-, δ- and Β-globin genes on the short arm of human chromosome 11.Nature 1979; 281: 606–608.PubMedCrossRefGoogle Scholar
  4. 4.
    Proudfoot NJ, Maniatis T. The structure of a human α-globin pscudogcne and its relationship to α-globin gene duplication.Cell 1980; 21:537–544.PubMedCrossRefGoogle Scholar
  5. 5.
    Proudfoot NJ, Gil A, Maniatis T. The structure of the human zcta globin gene and a closely linked, nearly identical pseudogene.Cell 1982; 31: 553–563.PubMedCrossRefGoogle Scholar
  6. 6.
    Fritsch 12F, Lawn RM, Maniatis T. Molecular cloning and characterization of the human Β- like globin gene clustcr.Cell 1980; 19. 959–972.PubMedCrossRefGoogle Scholar
  7. 7.
    Efstratiadis A, Posakony JW, Maniatis Tet al. The structure and evolution of the human Β-globin gene family.Cell 1980; 21: 653–668.PubMedCrossRefGoogle Scholar
  8. 8.
    Dierks P, vanOoyen A. Cochran MD et al. Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit Β-globin gene in mouse 3T6 cells.Cell 1983; 32: 695–706.PubMedCrossRefGoogle Scholar
  9. 9.
    Proudfoot NJ, nBrownlee GG. 3′ Non coding region sequences in cukaryotic messenger RNA.Nature 1976; 263: 211–214.PubMedCrossRefGoogle Scholar
  10. 10.
    Breathnach R, Chambon P. Organization and expression of cucaryotic split gene coding for proteins.Ann Rev Biochem 1981; 50: 349–383.PubMedCrossRefGoogle Scholar
  11. 11.
    Kazazian HH, Dowling CE, Waber PG et al. The spectrum of Β-thalassemia genes in China and Southeast Asia.Blood 1986; 68: 964–966.PubMedGoogle Scholar
  12. 12.
    Felber BK, Orkin SH, Hamer DH. Abnormal RNA splicing causes one form of αthalassemia.Cell 1982; 29: 895–902.PubMedCrossRefGoogle Scholar
  13. 13.
    Morle’ F, Lopez B, Henni T, Godet J. α-Thalassaemia associated with the deletion of two nucleotides at position -2 and -3 preceding the AUG codon.EMBO J 1985; 4: 1245–1250.Google Scholar
  14. 14.
    Morle’ F, Starck J, Godet J. α-Thalassemia due to deletipn of nucleotides -2 and -3 preceding the AUG initiation codon affects translation efficiency bothin vitro and in vivo.Nuc Acids Res 1986; 14: 3279–3292.CrossRefGoogle Scholar
  15. 15.
    Treisman R, Orkin SH, Maniatis T. Specific transcription and RNA splicing defects in five cloned Β-thalassemia genes.Nature 1983; 302: 591–596.PubMedCrossRefGoogle Scholar
  16. 16.
    Orkin SH, Antonarakis SE, KazazianHH, Jr. Base substitution at position -88 in a Β-thalassemic globin gene.J Biol Chem 1984; 259: 8679–8681.PubMedGoogle Scholar
  17. 17.
    Orkin SH, Sexton JP, Cheng Tet al. ATA boxtranscription mutation in Β-thalassemia.Nuc Acids Res 1983; 11: 4727–4734.CrossRefGoogle Scholar
  18. 18.
    Antonarakis SE, Orkin SH, Cheng Tet al. Β Thalassemia in American Blacks: Novel mutations in the “TATA” box and an acceptor splice site.Proc Nall Acad Sci USA 1984; 81 : 1154–1158.CrossRefGoogle Scholar
  19. 19.
    Takihara Y, Nakamura T, Yamada Het al. A novel mutation in the TATA box in a Japanese patient with Β+-thalassemia.Blood 1986; 67: 547–550.PubMedGoogle Scholar
  20. 20.
    Orkin SH, Kazazian HH, Jr, Antonarakis SEet al. Abnormal RNA processing due to the exon mutation of the ΒE-globin gene.Nature 1982; 300: 768–769.PubMedCrossRefGoogle Scholar
  21. 21.
    Cheng T, Orkin SH, Antonarakis SEet al. Β- Thalassemia in Chinese: use ofin vivo RNA analysis and oligonucleotide hybridization in systematic characterization of molecular defects.Proc Natl Acad Sci USA 1984; 81 : 2821–2825.PubMedCrossRefGoogle Scholar
  22. 22.
    Dobkin C, Pergolizzi RG, Bahre P, Bank A. Abnormal splice in a mutant human Β-globin gene not at the site of mutation.Proc Natl Acad Sci USA 1983; 80: 1184–1188.PubMedCrossRefGoogle Scholar
  23. 23.
    Busslinger M, Moschonas N, Flavell RA. Β+-Thalassemia: aberrant splicing results from a single point mutation in an intron.Cell 1981; 27: 289–298.PubMedCrossRefGoogle Scholar
  24. 24.
    Higgs DR, Goodbourn SEY, Lamb Jet al. α-Thalassaemia caused by a polyadenylation signal mutation.Nature 1983; 306: 398–400.PubMedCrossRefGoogle Scholar
  25. 25.
    Orkin SH, Cheng T, Antonarakis SE, Kazazian HH, Jr. Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human Β-globin gene.EMBO J 1985; 4: 453–456.PubMedGoogle Scholar
  26. 26.
    Pirastu M, Saglio G, Chang JCet al. Initiation codon mutation as a cause of α-thalassemia.J Biol Chem 1984; 259:12315–12317.PubMedGoogle Scholar
  27. 27.
    Moi P, Cash FE, Liebhaber SAet al. An initiation codon mutation (AUG -> GUG) of the human α1-globin gene.J Clin Invest 1987; 80: 1416–1421.PubMedGoogle Scholar
  28. 28.
    Chang JC, Kan. Βo-thalassemia: a nonsense mutation in man.Proc Natl Acad Sci USA 1979; 76: 2886–2889.PubMedCrossRefGoogle Scholar
  29. 29.
    Orkin SH, Goff SC. Nonsense and frameshift mutations in Βo-thalassemia detected in cloned Β-globin genes.J Biol Chem 1981; 256: 9782–9784.PubMedGoogle Scholar
  30. 30.
    Clegg JB, Weatherall DJ, Milner PR Hemoglobin Constant Spring — a chain termination mutation.Nature 1971; 234: 337–339.PubMedCrossRefGoogle Scholar
  31. 31.
    Nicholls RD, Fischel-Ghodsian N, Higgs DR. Recombination at the human α-globin gene cluster: sequence features and topological constraints.Cell 1987; 49: 369–378.PubMedCrossRefGoogle Scholar
  32. 32.
    Lauer J, Shen C-KJ, Maniatis T. The chromosomal arrangement of human α-like globin genes: sequence homology and α-globin gene deletions.Cell 1980; 20 :119–130.PubMedCrossRefGoogle Scholar
  33. 33.
    Higgs DR, Hill AVS, Bowden DKet al. Independent recombination events between the duplicated human α-globin genes; implications for their concerted evolution.Nuc Acids Res 1984; 12: 6965–6977.CrossRefGoogle Scholar
  34. 34.
    Hill AVS, Bowden DK, Trent RJet al. Melanesians and Polynesians share a unique α-thalassemia mutation.Am J Hum Genet 1985; 37: 571–580.PubMedGoogle Scholar
  35. 35.
    Liebhaber SA, Kan YW. Differentiation of the mRNA transcripts originating for the α1- and α2-globin loci in normals and α-thalassemics.J Clin Invest 1981; 68: 439–446.PubMedCrossRefGoogle Scholar
  36. 36.
    Spritz RA, Orkin SH. Duplication followed by deletion accounts for the structure of an Indian deletion Βgo-thalassemia gene.Nuc Acids Res 1982; 10: 8025–8029.CrossRefGoogle Scholar

Copyright information

© 1989 1989

Authors and Affiliations

  • Suthat Fucharoen
    • 1
    • 3
  • Pranee Winichagoon
    • 2
  1. 1.Thalassemia Centre, Faculty of Graduate StudiesMahidol UniversityBangkokThailand
  2. 2.Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  3. 3.Department of MedicineFaculty of Medicine, Siriraj HospitalBangkokThailand

Personalised recommendations