Anin vitro, serum-free organ culture technique for the study of development and growth of the dermal skeleton in fish

  • Joseph T. M. Koumans
  • Jean-yves Sire
Cellular Models


To develop a serum-free, chemically definedin vitro organ culture system enabling the study of epithelial-mesenchymal interactions in development and growth of fish dermal skeleton, we investigatedin vitro continuation of scale regeneration in the cichlid fishHemichromis bimaculatus. The culture medium in our system is based on Leibovitz medium (L-15) supplemented with vitamin C, additional amino acids and HEPES. With this basis medium, we examined the effects of all trans-retinoic acid, dexamethasone, and prostaglandin-E2 (PG-E2), factors known to exert an effect on development and growth of teeth and bone in mammalian culture systems, on thein vitro regeneration of scales. These effects were compared with those obtained by supplementation of the basis medium with newborn and fetal calf serum. To evaluate our culture system, the medium that allowed to mimick in the best possible way thein vivo regeneration of scales (i.e., the basis medium plus dexamethasone and PG-E2) was also tested on thein vitro development of teeth in the same fish species.

Our serum-free, chemically defined organ culture system enablesin vitro development and growth of both scales and teeth. With this model culture system, it is possible to evaluate thein vitro effects of hormones, growth factors, and other substances on growth and development of dermal skeleton in fish.

Key words

fish skeleton development organ culture serum free 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avella, M.; Berhaut, J.; Payan, P. Primary culture of gill epithelial cells from the sea bassDicentrarchus labrax. In Vitro Cell. Dev. Biol. 30A:41–49; 1994.CrossRefGoogle Scholar
  2. Bègue-Kirn, C.; Smith, A. J.; Loriot, M., et al. Comparative analysis of TGFβ, BMPs, IGF1, msxs, fibronectin, osteonectin and sialoprotein gene expression during normal andin vitro-induced odontoblast differentiation. Int. J. Dev. Biol. 38:405–420; 1994.PubMedGoogle Scholar
  3. Bloch-Zupan, A.; Décimo, D.; Loriot, M., et al. Expression of nuclear retinoic acid receptors during mouse odontogenesis. Differentiation 57:195–203; 1994.PubMedCrossRefGoogle Scholar
  4. Cadi, R.; Dhouailly, D.; Sengel, P. Use of retinoic acid for the analysis of dermal-epidermal interactions in tarsometatarsal skin of the chick embryo. Dev. Biol. 100:489–495; 1983.PubMedCrossRefGoogle Scholar
  5. Darr, D.; Combs, S.; Pinnell, S. Ascorbic acid and collagen synthesis: rethinking a role for lipid peroxidation. Arch. Biochem. Biophys. 307:331–335; 1993.PubMedCrossRefGoogle Scholar
  6. Denèfle, J.-P.; Lechaire, J.-P. Epithelial locomotion and differentiation in frog skin cultures. Tissue Cell 16:499–517; 1984.PubMedCrossRefGoogle Scholar
  7. Ekblom, P.; Thesleff, I.; Miettinen, A., et al. Organogenesis in a defined medium supplemented with transferrin. Cell Differ. 10:281–288; 1981.PubMedCrossRefGoogle Scholar
  8. Ekblom, P.; Thesleff, I.; Saxén, L., et al. Transferrin as a fetal growth factor: acquisition of responsiveness related to embryonic induction. Proc. Natl. Acad. Sci. USA 80:2651–2655; 1983.PubMedCrossRefGoogle Scholar
  9. Elima, K. Osteoinductive proteins. Ann. Med. 25:395–402; 1993.PubMedGoogle Scholar
  10. Fell, H. B. The effect of excess vitamin A on cultures of embryonic chicken skin explanted at different stages of differentiation. Proc. R. Soc. Lond. B. 146:242–256; 1957.CrossRefGoogle Scholar
  11. Fell, H. B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. (Lond.) 119:470–488; 1953.Google Scholar
  12. Frish, S. M.; Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124:619–626; 1994.CrossRefGoogle Scholar
  13. Géraudie, J.; Brulfert, A.; Monnot, M. J., et al. Teratogenic and morphogenetic: effects of retinoic acid on the regenerating pectoral fin in zebrafish. J. Exp. Zool. 269:12–22; 1994.CrossRefGoogle Scholar
  14. Hall, B. K. Evolutionary issues in craniofacial biology. Cleft Palate J. 27:95–100; 1990.PubMedCrossRefGoogle Scholar
  15. Hall, B. K. Biology and mechanisms of tissue interactions in developing systems. In: Hodges, G. M.; Rowlatt, C., eds. Developmental biology and cancer. Vol. 7, Boca Raton, FL: CRC Press; 1994;161–185.Google Scholar
  16. Hardy, M. H.; Sweeny, P. R.; Bellows, C. G. The effects of vitamin A on the epidermis of the fetal mouse in organ culture. An ultrastructural study. J. Ultrastruct. Res. 64:246–260; 1978.PubMedCrossRefGoogle Scholar
  17. Hightower, L. E.; Renfro, J. L. Recent applications of fish cell culture to biomedical research. J. Exp. Zool. 248:290–302; 1988.PubMedCrossRefGoogle Scholar
  18. Hughes-Fullford, M.; Appel, R.; Kumegawa, M., et al. Effect of dexamethasone on proliferating osteoblasts: inhibition of prostaglandin E2 synthesis, DNA synthesis and alterations in actin cytoskeleton. Exp. Cell Res. 203:150–156; 1992.CrossRefGoogle Scholar
  19. Huysseune, A. Development of the anterior part of the mandible and the mandibular dentition in two species of Cichlidae (Teleostei). Cybium 14:327–344; 1990.Google Scholar
  20. Huysseune, A.; Sire, J. Y. Bone and cartilage resorption in relation to tooth development in the anterior part of the mandible in cichlid fish: a light and TEM study. Anat. Rec. 234:1–14; 1992.PubMedCrossRefGoogle Scholar
  21. Iger, Y.; Abraham, M. The process of skin healing in experimentally wounded carp. J. Fish Biol. 36:421–437; 1990.CrossRefGoogle Scholar
  22. Jetten, A. M.; Fitzgerald, D. J.; Nettesheim, P. Control of differentiation and proliferation of normal and transformed airway epithelial cells by retinoids. In: Scarpelli, D. G.; Migaki, C., eds. Current topics on nutrition and disease. Vol. 15. New York: Alan R. Liss; 1986:33–70.Google Scholar
  23. Johnson, K. J.; Scadding, S. R. Effects of vitamin A and other retinoids on the differentiation and morphogenesis of the integument and limbs of vertebrates. Can. J. Zool. 69:263–273; 1991.Google Scholar
  24. Kasugai, S.; Shibata, S.; Susuki, S., et al. Characterization of a system of mineralized-tissue formation by rat dental pulp cells in culture. Arch. Oral Biol. 38:769–777; 1993.PubMedCrossRefGoogle Scholar
  25. Kingsly, D. M. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes & Dev. 8:133–146; 1994.CrossRefGoogle Scholar
  26. Komura, J.-I.; Mitani, H.; Shima, A. Fish cell culture: establishment of two fibroblast-like cell lines (OL-17 and OL-32) from fins of the Medaka (Oryzias latipes). In Vitro Cell. Dev. Biol. 24:294–298; 1988.CrossRefGoogle Scholar
  27. Koumans, J. T. M.; Akster, H. A. Myogenic cells in development and growth of fish. Comp. Biochem. Physiol. 110A:3–20; 1995.CrossRefGoogle Scholar
  28. Koumans, J. T. M.; Akster, H. A.; Dulos, G. J., et al. Myosatellite cells of Cyprinus carpio (Teleostei) in vitro: isolation, recognition and differentiation. Cell Tissue Res. 261:173–181; 1990.CrossRefGoogle Scholar
  29. Kronmiller, J. E.; Beeman, C. S.; Kwiecien, K., et al. Effects of the intermediate retinoid metabolite retinal on the pattern of the dental lamina in vitro. Arch. Oral Biol. 39:839–845; 1994.PubMedCrossRefGoogle Scholar
  30. Langille, R.; Hall, B. K. The organ culture and grafting of lamprey cartilage and teeth. In Vitro Cell. Dev. Biol. 24:1–8; 1988.PubMedCrossRefGoogle Scholar
  31. Machwate, M.; Zerath, E.; Holy, X., et al. Insulin-like growth factor-I increases trabecular bone formation and osteoblastic cell proliferation in unloaded rats. Endocrinology 134:1031–1038; 1994.PubMedCrossRefGoogle Scholar
  32. Mark, M. P.; Bloch-Zupan, A.; Ruch, J.-V. Effects of retinoids on tooth morphogenesis and cytodifferentiations, in vitro. Int. J. Dev. Biol. 36:517–526; 1992.PubMedGoogle Scholar
  33. Meunier, F. J. Les tissus osseux des Ostéichtyens. Structure, genèse, croissance et évolution. Arch. Doc. Inst. Ethnol., Micro-éd., Mus. Nat. Hist. Nat., 200 pp. Paris, SN 82-600-328; 1983.Google Scholar
  34. Miyake, T.; Hall, B. K. Development of in vitro organ culture techniques for differentiation and growth of cartilages and bones from teleost fish and comparisons with in vivo skeletal development. J. Exp. Zool. 268:22–43; 1994.CrossRefGoogle Scholar
  35. Obinata, A.; Kawada, M.; Endo, H. Induction of epidermal mucous metaplasia by culture of recombinant of undifferentiated epidermis and retinol-treated dermis in a chemically defined medium. Dev. Biol. 123:59–62; 1987.PubMedCrossRefGoogle Scholar
  36. Pawson, R. A. A historical introduction to the chemistry of vitamin A and its analogs (the retinoids). Ann. NY Acad. Sci. 359:1–8; 1981.PubMedCrossRefGoogle Scholar
  37. Peck, G. L.; Elias, P. M.; Wetzel, B. Effects of retinoic acid on embryonic chick skin. J. Invest. Dermatol. 69:463–476; 1977.PubMedCrossRefGoogle Scholar
  38. Richman, J. Y.; Tickle, C. Epithelial-mesenchymal interactions in the outgrowth of limb buds and facial primordia in chick embryos. Dev. Biol. 154:299–308; 1992.PubMedCrossRefGoogle Scholar
  39. Roach, H. I.; Hillier, K.; Shearer, J. R. Ascorbic acid requirements for collagen synthesis (proline hydroxylation) during long-term culture of embryonic chick femurs. Biochim. Biophys. Acta 842:139–145; 1985.PubMedGoogle Scholar
  40. Sanders, E. J. The roles of epithelial-mesenchymal cell interactions in developmental processes. Biochem. Cell Biol. 66:530–540; 1988.PubMedCrossRefGoogle Scholar
  41. Simo, P.; Simon-Assmann, P.; Arnold, C., et al. Mesenchyme-mediated effect of dexamethasone on laminin in cocultures of embryonic gut epithelial cells and mesenchyme-derived cells. J. Cell Sci. 101:161–171; 1992.PubMedGoogle Scholar
  42. Sire, J. Y. Fibres d’ancrage et couche limitante externe à la surface des écailles du CichlidaeHemichromis bimaculatus (Téléostéen, Perciforme): données ultrastructurales. Ann. Sci. Nat., Zool. Paris 13(7):163–180; 1985.Google Scholar
  43. Sire, J. Y. Ontogenic development of surface ornamentation in the scales ofHemichromis bimaculatus (Cichlidae). J. Fish Biol. 28:713–724; 1986.CrossRefGoogle Scholar
  44. Sire, J. Y. Structure, formation et régénération des écailles drsun poisson téléostéen,Hemichromis bimaculatus (Perciforme, Cichlidé). Arch. Doc. Inst. Ethnol., Micro-éd., Mus. Nat. Hist. Nat., SN 87 600449: Thèse de Doctorat ès-Sciences, Paris; 1987.Google Scholar
  45. Sire, J. Y. The scales in youngPolypterus senegalus are elasmoid: new phylogenetic implications. Am. J. Anat. 186:315–323; 1989.PubMedCrossRefGoogle Scholar
  46. Sire, J. Y. From ganoid to elasmoid scales in the actinopterygian fishes. Neth. J. Zool. 40:75–92; 1990.CrossRefGoogle Scholar
  47. Sire, J. Y.; Boulekbache, H.; Joly, C. Epidermal-dermal and fibronectin cell-interactions during fish scale regeneration: immunofluorescence and TEM studies. Biol. Cell 68:147–158; 1990.CrossRefGoogle Scholar
  48. Sire, J. Y.; Géraudie, J. Fine structure of the developing scale in the cichlidHemichromis bimaculatus (Pisces, Teleostei, Perciformes). Acta Zool. (Stockh.) 64:1–8; 1983.CrossRefGoogle Scholar
  49. Sire, J. Y.; Géraudie, J. Fine structure of regenerating scales and their associated cells in the cichlid Hemichromis bimaculatus (Gill). Cell Tissue Res. 237:537–547; 1984.CrossRefGoogle Scholar
  50. Smola, H.; Thiekötter, G.; Fusenig, N. E. Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J. Cell Biol. 122:417–429; 1993.PubMedCrossRefGoogle Scholar
  51. Sulik, K. S.; Dehart, D. B. Retinoic-acid-induced limb malformation resulting from apical ectodermal ridge cell death. Teratology 37:527–537; 1988.PubMedCrossRefGoogle Scholar
  52. Trowell, O. A. A modified technique for organ culturein vitro. Exp. Cell Res. 6:246–248; 1954.PubMedCrossRefGoogle Scholar
  53. Viallet, J. P.; Dhouailly, D. Retinoic acid and mouse skin morphogenesis. II. Role of epidermal competence in hair glandular metaplasia. Dev. Biol. 166:277–288; 1994.PubMedCrossRefGoogle Scholar
  54. Wolf, K.; Quimby, M. C. Fish cell and tissue culture. In: Hoar, W. S.; Randall, D. J., eds. Fish physiology, New York: Academic Press; 1969:253–305.Google Scholar
  55. Yano, H.; Ohya, K.; Amagasa, T. Effects of insulin onin vitro bone formation in fetal rat parietal bone. Endocr. J. 41:293–300; 1994.PubMedGoogle Scholar
  56. Zimmermann, B.; Cristea, R. Dexamethasone induces chondrogenesis in organoid culture of cell mixtures from mouse embryos. Anat. Embryol. 187:67–73; 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1996

Authors and Affiliations

  • Joseph T. M. Koumans
    • 1
  • Jean-yves Sire
    • 1
  1. 1.URA CNRS 1137, Laboratoire d’Anatomie comparéeUniversité Paris 7Paris cedex 05France

Personalised recommendations