Advertisement

Modified antigen-binding of human antibodies with glycosylation variations of the light chains produced in sugar-limited human hybridoma cultures

  • Hirofumi Tachibana
  • Kim Jiyoun
  • Kiyotaka Taniguchi
  • Yoshitaka Ushio
  • Kiichiro Teruya
  • Kazuhiro Osada
  • Yuichi Inoue
  • Sanetaka Shirahata
  • Hiroki Murakami
Immunology

Summary

We have characterized the effects of serum andN-acetylglucosamine in a glucose-deprived condition on the glycosylation of antibody light chains, as well as the resulting biological properties of those antibodies. We have chosen for our investigation the human hybridoma lines producing monoclonal antibodies reactive to lung adenocarcinoma. Each antibody possess aN-glycosylated carbohydrate chain in the hypervariable region of the light chains. When the cell lines were grown in the absence of glucose, variant light chains with varying molecular masses were found to be secreted. Analysis of these light chains produced in a glucose-deprived condition revealed that the changed molecular-mass of the variant light chains is due to different glycosylation. Addition ofN-acetylglucosamine or fetal calf serum to the glucose-free medium led to the creation of other light chains that exhibit increased antigen binding activity.

Key words

human monoclonal antibody light chain glycosylation antigen-binding monosaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chothia, C.; Lesk, A. M. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196:901–917; 1987.PubMedCrossRefGoogle Scholar
  2. 2.
    Clamp, J. R.; Bernier, G. M.; Putnam, F. W. Source of the apparent carbohydrate content of bence-jones proteins. Biochim. Biophys. Acta 86:149–155; 1964.PubMedGoogle Scholar
  3. 3.
    Curling, E. M. A.; Hayter, P. M.; Baines, A. J., et al. Recombinant human interferon-γ. Biochem. J. 272:333–337; 1990.PubMedGoogle Scholar
  4. 4.
    Gauny, S. S.; Andya, J.; Thomson, J., et al. Effect of production method on the systemic clearance rate of a human monoclonal antibody in the rat. Hum. Antib. Hybrid. 2:33–38; 1991.Google Scholar
  5. 5.
    Hashizume, S.; Kamei, M.; Mochizuki, K., et al. Serodiagnosis of cancer by usingCandida cytochromec recognized by human monoclonal antibody HB4C5. Hum. Antib. Hybrid. 2:142–147; 1991.Google Scholar
  6. 6.
    Hashizume, S.; Mochizuki, K.; Kamei, M., et al. Serodiagnosis of cancer, using porcine carboxypeptidase A as an animal antigen recognized by human monoclonal antibody HB4C5. Hum. Antib. Hybrid. 2:150–155; 1991.Google Scholar
  7. 7.
    Kato, M.; Mochizuki, K.; Hashizume, S., et al. Activity enhancement of a lung cancer-associated human monoclonal antibody HB4C5 byN-deglycosylation. Hum. Antib. Hybrid. 4:9–14; 1993.Google Scholar
  8. 8.
    Kato, M.; Mochizuki, K.; Kuroda, K., et al. Histone H2B as an antigen recognized by lung cancer-specific human monoclonal antibody HB4C5. Hum. Antib. Hybrid. 2:94–101; 1991.Google Scholar
  9. 9.
    Koide, N.; Nose, M.; Muramatsu, T. Recognition of IgG by Fc receptor and complement: effects of glycosidase digestion. Biochem. Biophys. Res. Commun. 75:838–844; 1977.PubMedCrossRefGoogle Scholar
  10. 10.
    Laemmli, U. K. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685; 1970.PubMedCrossRefGoogle Scholar
  11. 11.
    Murakami, H.; Hashizume, S.; Ohashi, H., et al. Human-human hybridomas secreting antibodies specific to human lung carcinoma. In Vitro Cell. Dev. Biol. 21:593–596; 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Murakami, H.; Masui, H.; Sato, G., et al. Growth of hybridoma cells in serum-free medium: ethanolamine is an essential component. Proc. Natl. Acad. Sci. USA 79:575–583; 1982.CrossRefGoogle Scholar
  13. 13.
    Novick, K. E.; Fasy, T. M.; Losman, M. J., et al. Polyreactive IgM antibodies generated from autoimmune mice and selected for histone-binding activity. Int. Immunol. 4:1103–1111; 1992.PubMedCrossRefGoogle Scholar
  14. 14.
    Rearick, J. I.; Chapman, A.; Kornfeld, S. Glucose starvation alters lipid-linked oligosaccharide biosynthesis in chinese hamster ovary cells. J. Biol. Chem. 256:6255–6261; 1981.PubMedGoogle Scholar
  15. 15.
    Sibley, C. H.; Wagner, R. A. Glycosylation is not required for membrane localization or secretion of IgM in a mouse B cell lymphoma. J. Immunol. 126:1868–1873; 1981.PubMedGoogle Scholar
  16. 16.
    Sox, H. C., Jr.; Hood, L. Atlachment of carbohydrate to the variable region of myeloma immunoglobulin light chains. Proc. Natl. Acad. Sci. USA 66:975–982; 1970.PubMedCrossRefGoogle Scholar
  17. 17.
    Stark, N. J.; Heath, E. C. Glucose-dependent glycosylation of secretory glycoprotein in mouse myeloma cells. Arch. Biochem. Biophys. 192:599–609; 1979.PubMedCrossRefGoogle Scholar
  18. 18.
    Tachibana, H.; Seki, K.; Murakami, H. Identification of hybrid-type carbohydrate chains on the light chain of human monoclonal antibody specific to lung adenocarcinoma. Biochim. Biophys. Acta. 1182:257–263; 1993.PubMedGoogle Scholar
  19. 19.
    Tachibana, H.; Shirahata, S.; Murakami, H. Generation of specificity-variant antibodies by alteration of carbohydrate in light chain of human monoclonal antibodies. Biochem. Biophys. Res. Commun. 189:625–632; 1992.PubMedCrossRefGoogle Scholar
  20. 20.
    Tachibana, H.; Shirahata, S.; Murakami, H. Alteration of reactivity of human monoclonal antibodies produced by concanavalin A-resistant hybridomas. In: Murakami, H.; Shirahata, S.; Tachibana, H., eds. Animal cell technology: basic and applied aspects. Vol. 4. Dordrecht, Netherlands: Kluwer Academic Publishers; 1992:547–551.Google Scholar
  21. 21.
    Tachibana, H.; Taniguchi, K.; Ushio, Y., et al. Changes of monosaccharides availability of human hybridoma lead to alteration of biological properties of human monoclonal antibody. Cytotechnology 16:151–157; 1994.PubMedCrossRefGoogle Scholar
  22. 22.
    Towbin, H.; Staehelim, T.; Gordin, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.PubMedCrossRefGoogle Scholar
  23. 23.
    Turco, S. J. Modification of oligosaccharide-lipid synthesis and protein glycosylation in glucose-deprived cells. Arch. Biochem. Biophys. 205:330–339; 1980.PubMedCrossRefGoogle Scholar
  24. 24.
    Yano, T.; Yasumoto, K.; Nagashima, A., et al. Immunohistological characterization of human monoclonal antibody against lung cancer. J. Surg. Oncol. 39:108–113; 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1996

Authors and Affiliations

  • Hirofumi Tachibana
    • 1
  • Kim Jiyoun
    • 1
  • Kiyotaka Taniguchi
    • 1
  • Yoshitaka Ushio
    • 1
  • Kiichiro Teruya
    • 1
  • Kazuhiro Osada
    • 1
  • Yuichi Inoue
    • 1
  • Sanetaka Shirahata
    • 1
  • Hiroki Murakami
    • 1
  1. 1.Graduate School of Genetic Resources TechnologyKyushu UniversityFukuokaJapan

Personalised recommendations