Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 82, Issue 1, pp 100–110 | Cite as

A stepping stone from classical to quantum mechanics

  • C. Tzara
Article

Summary

A microscopic mechanics is constructed in order to incorporate the Planck constant while retaining the concept of particle location. In the one-dimensional stationary case, the first integral of the equation of motion can be solved explicitly with the help of the Schrödinger equation. It is thus shown that, in describing bound-state motions, this mechanics meets a serious difficulty. It can be overcome only by renouncing the classical concepts of trajectories and opting for quantum mechanics.

PACS. 03.65

Quantum theory quantum mechanics 

Riassunto

Si costruisce una meccanica microscopica per incorporare la costante di Planck mantenendo il concetto di localizzazione della particella. Nel caso stazionario unidimensionale, la prima integrale dell’equazione di moto puó essere risolta in forma esplicita con l’aiuto dell’equazione di Schrödinger. Si mostra che, nel descrivere movimenti di stati legati, questa meccanica incontra serie difficoltà, che possono essere superate solo rinunciando ai concetti classici di traiettoria e optando per la meccanica quantistica.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    E. Madelung:Z. Phys.,40, 332 (1926).Google Scholar
  2. (2).
    A. Messiah:Mecanique Quantique (Dunod, 1959).Google Scholar
  3. (3).
    L. de Broglie:J. Phys. Rad.,8, 225 (1927).CrossRefGoogle Scholar
  4. (4).
    D. Bohm:Phys. Rev.,85, 166 (1952).ADSCrossRefGoogle Scholar
  5. (5).
    D. Bohm andJ. P. Vigier:Phys. Rev.,96, 208 (1954).MathSciNetADSCrossRefMATHGoogle Scholar
  6. (6).
    E. Nelson:Phys. Rev.,150, 1079 (1966).ADSCrossRefGoogle Scholar
  7. (7).
    T. H. Boyer: inFoundations of Radiation Theory and Quantum Mechanics edited byA. O. Barut (Plenum Press, New York, N. Y., 1981).Google Scholar
  8. (8).
    M. Yussouf:Nuovo Cimento B,54, 36 (1979).MATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1984

Authors and Affiliations

  • C. Tzara
    • 1
  1. 1.Dph-N/HECEN SaclayGif-sur-Yvette CedexFrance

Personalised recommendations