Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 109, Issue 10, pp 1049–1064 | Cite as

Non-perturbative approximations of path integrals with some applications to quantum statistics

  • V. B. Magalinsky
  • M. Hayashi
  • G. Martinez Peña
  • R. Reyes Sánchez
Article
  • 20 Downloads

Summary

Some methods for constructing uniform non-perturbative approximations of path integrals over a conditional Wiener measure are examined. The relation of these methods and the results obtained with their help to the ones known in the literature is established. The concrete analytical procedures and the formulae for the corresponding approximations are constructed and some applications in quantum statistical mechanics are considered.

PACS 03.65

Quantum theory quantum mechanics 

PACS 05.30

Quantum statistical mechanics 

PACS 05.40

Fluctuation phenomena, random processes and Brownian motion 

PACS 11.15.Kc

Classical and semiclassical techniques 

PACS 11.15.Tk

Other nonperturbative techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. A. Beylinson:Functional Integrals (UDN, Moscow, 1979).Google Scholar
  2. [2]
    R. Tao:Phys. Rev. Lett.,61, 2405 (1988).ADSCrossRefGoogle Scholar
  3. [3]
    M. N. Rosenbluth:Phys. Rev. Lett.,63, 467 (1989).ADSCrossRefGoogle Scholar
  4. [4]
    P.-G. De Gennes:Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, N.Y., 1972).Google Scholar
  5. [5]
    M. Doi andS. F. Edwards:The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986);S.F. Edwards andM. Muthukumar:J. Chem. Phys.,89, 2435 (1988).Google Scholar
  6. [6]
    R. P. Feynman:Statistical Mechanics (Benjamin, Reading, Mass., 1972).Google Scholar
  7. [7]
    K. Binder (Editor):Monte-Carlo Methods in Statistical Physics (Springer-Verlag, Berlin, Heidelberg, New York, 1979).Google Scholar
  8. [8]
    R. P. Feynman andH. Kleinert:Phys. Rev. A,34, 5080 (1986).MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Giachetti andV. Tognetti:Phys. Rev. Lett.,55, 912 (1985).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R. Giachetti andV. Tognetti:Phys. Rev. B,33, 7647 (1986).ADSCrossRefGoogle Scholar
  11. [11]
    J. R. Wang:Phys. Rev. A,41, 4493 (1990).ADSCrossRefGoogle Scholar
  12. [12]
    A. Royer:Chem. Phys. Lett.,119, 290 (1985).ADSCrossRefGoogle Scholar
  13. [13]
    Wu Ngok Tyok andI. D. Feranchuk:Teplofiz. Vys. Temp.,27, 258 (1989).Google Scholar
  14. [14]
    G. J. Papadopoulos andJ. T. Devresse:Path Integrals and Their Application in Statistical and Solid State Physics (Plenum Press, London, New York, 1978).Google Scholar
  15. [15]
    P. Löwdin andB. Nagel:Int. J. Quantum Chem.,35, 839 (1989).CrossRefGoogle Scholar
  16. [16]
    R. Giachetti andV. Tognetti:Phys. Rev. B,36, 5512 (1987).ADSCrossRefGoogle Scholar
  17. [17]
    R. Giachetti, V. Tognetti andR. Vaia:Phys. Rev. A,37, 2165 (1988).ADSCrossRefGoogle Scholar
  18. [18]
    R. Giachetti, V. Tognetti andR. Vaia:Phys. Rev. A,38, 1521 (1988).ADSCrossRefGoogle Scholar
  19. [19]
    R. Giachetti, V. Tognetti andR. Vaia:Phys. Rev. A,38, 1638 (1988).ADSCrossRefGoogle Scholar
  20. [20]
    R. Vaia andV. Tognetti:Int. J. Mod. Phys.,4, 2005 (1990).ADSCrossRefGoogle Scholar
  21. [21]
    G. G. Hoffman:J. Chem. Phys.,92, 2966 (1989).ADSCrossRefGoogle Scholar
  22. [22]
    A. Sethia, S. Sanyal andY. Singh:J. Chem. Phys.,93, 7268 (1990).ADSCrossRefGoogle Scholar
  23. [23]
    J. Cao andB. J. Berne:J. Chem. Phys.,92, 7531 (1989).MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    I. I. Gol’dman andV. D. Krivchenkov:Zbornik Zadach po Kvant. Mekhanike (Moscow, 1962).Google Scholar
  25. [25]
    Handbook of Mathematics: Functional Analysis (Nauka, Moscow, 1964).Google Scholar
  26. [26]
    V. B. Magalinsky: inProblemy Statisticheskoi i Kvantovoi Fiziki (UDN, Moscow, 1979), p. 2.Google Scholar
  27. [27]
    V. B. Magalinsky: VINITI No. 35-78-B88 (1988).Google Scholar
  28. [28]
    R. Reyes Sánchez:A Variational Principle for Wiener Conditional Measure Integrals and Some of its Applications in Statistical Mechanics, PhD Thesis (UDN, Moscow, 1991), in Russian.Google Scholar
  29. [29]
    V. B. Magalinsky: inTez. Dokl. XXV Nauch. Konf. Fac. Fiz.-Mat. Est. Nauk (UDN, Moscow, 1989), p. 7.Google Scholar
  30. [30]
    V. B. Magalinsky andR. Reyes Sánchez: inTez. Dokl. XXVI Nauch. Konf. Fac. Fiz.-Mat. Est. Nauk (UDN, Moscow, 1990), p. 30.Google Scholar
  31. [31]
    V. B. Magalinsky: inStatisticheskaya Fizika i Teoria Polya (UDN, Moscow, 1990), p. 9.Google Scholar
  32. [32]
    V. B. Magalinsky:Ž. Ėksp. Teor. Fiz.,99, 184 (1991);Sov. Phys. JETP,72 (1), 103 (1991).Google Scholar
  33. [33]
    A. Erdeyi (Editor):Higher Transcendental Functions, Vol. I (McGraw-Hill, New York, N.Y., 1953).Google Scholar
  34. [34]
    V. B. Magalinsky andR. Reyes Sánchez: inTez. Dokl. XXVII Nauch. Konf. Fak. Fiz.-Mat. Est. Nauk (UDN, Moscow, 1991), p. 20.Google Scholar
  35. [35]
    N. Froman andP. U. Froman:WKB-approximation (Izd. Mir, Moscow, 1964).Google Scholar
  36. [36]
    V. P. Maslov:Asymptoticheskie Metody i Teoriya Vozmuschenii (Nauka, Moscow, 1988).Google Scholar
  37. [37]
    V. B. Magalinsky: inTez. Dokl. XXVIII Nauch. Konf. Fak. Fiz.-Mat. Est. Nauk (UDN, Moscow, 1992), p. 31.Google Scholar
  38. [38]
    V. B. Magalinsky: VINITI No. 4631 (1984).Google Scholar
  39. [39]
    Yu. P. Rybakov andYa. P. Terletsky:Kvant. Mekhanika (UDN, Moscow, 1991).Google Scholar
  40. [40]
    V. V. Kudriashov:Teor. Mat. Fiz.,88, 314 (1991).Google Scholar
  41. [41]
    V. G. Bagrov, V. V. Belov andI. M. Ternov:Teor. Mat. Fiz.,50, 390 (1980).MathSciNetGoogle Scholar
  42. [42]
    A. M. Rogova:Izv. Vuzov. Fiz.,7, 77 (1991).MathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica 1994

Authors and Affiliations

  • V. B. Magalinsky
    • 1
    • 2
  • M. Hayashi
    • 3
  • G. Martinez Peña
    • 1
  • R. Reyes Sánchez
    • 1
  1. 1.Facultad de Ciencias Físico MatemáticasUniversidad Autónoma de PueblaPueblaMéxico
  2. 2.Department of Theoretical PhysicsRussian Friendship UniversityMoscowRussia
  3. 3.Department of PhysicsTokyo University of Pharmacy and Life ScienceTokyoJapan

Personalised recommendations