Il Nuovo Cimento B (1971-1996)

, Volume 107, Issue 6, pp 611–630 | Cite as

The ADM Lagrangian in extrinsic gravity

  • V. A. Franke
  • V. Tapia


We consider the properties of the ADAM Lagrangian in the model for gravity based on extrinsic geometry recently developed. In this model the space-time is embedded into a space of more dimensions and the embedding functions are considered as dynamical variables. In spite of the naïve expectatives this Lagrangian depends only on first-order time derivatives of the fields, the embedding functions. This is a nice property since in this case on would expect an easy canonical formulation. Another nice property is the fact that the energy-momentum tensor is identically zero. The shift constraints are easily calculated; however, the lapse constraint has not been calculated since it relies on an involved matrix calculation. After fixing the gauge, this reflects in the impossibility of solving, even when the Legendre transformation is invertible, for the velocities. Furthermore, the gauged energy-momentum tensor is not a tensor density.


04.50 Unified field theories and other theories of gravitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Tapia:Class. Quantum Gravit.,6, L49 (1989).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M. D. Maia:Gen. Relativ. Gravit.,18, 695 (1986).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    M. Pavšič:Phys. Lett. A,116, 1 (1986).MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    G. W. Gibbons andD. L. Wiltshire:Nucl. Phys. B,287, 717 (1987).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. A. Logunov andYu. M. Loskutov:Fiz. Elem. Chastis At. Yadra,18, 429 (1987); English translation:Sov. J. Part. Nucl.,18, 179 (1987).Google Scholar
  6. [6]
    L. D. Landau andE. M. Lifshtz:Teoriya Polyo (Nauka, Moskva, 1973); English translation:The Classical Theory of Fields (Pergamon, Oxford, 1979), 4th revised edition.Google Scholar
  7. [7]
    M. Ferraris andM. Francaviglia:J. Math. Phys.,26, 1243 (1985).MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    V. Tapia:Nuovo Cimento B,101, 183 (1988).ADSCrossRefGoogle Scholar
  9. [9]
    V. Tapia: inTopics in Analysis, a volume dedicated to Cauchy, edited byTh. M. Rassias (World Scientific, Singapore, 1989).Google Scholar
  10. [10]
    L. P. Eisenhart:Riemannian Geometry (Princeton University Press, Princeton, N.J., 1926).Google Scholar
  11. [11]
    M. Janet:Ann. Soc. Polon. Math.,5, 38 (1926).Google Scholar
  12. [12]
    E. Cartan:Ann. Soc. Polon. Math.,6, 38 (1927).Google Scholar
  13. [13]
    A. Friedman:J. Math. Mech.,10, 625 (1961).MathSciNetGoogle Scholar
  14. [14]
    J. Nash:Ann. Math.,63, 20 (1956).MathSciNetCrossRefGoogle Scholar
  15. [15]
    C. J. Clarke:Proc. R. Soc. London, Ser. A,314, 417 (1970).ADSCrossRefGoogle Scholar
  16. [16]
    R. E. Greene:Mem. Amer. Math. Soc., n.97, 1 (1970).MathSciNetGoogle Scholar
  17. [17]
    T. Regge andC. Teitelboim:Proceedings of the First Marcel Grossman Meeting, Trieste, Italy, 1975, edited byR. Ruffini (North-Holland, Amsterdam, 1977).Google Scholar
  18. [18]
    S. Deser, F. A. E. Pirani andD. C. Robinson:Phys. Rev. D,14, 3301 (1976).ADSCrossRefGoogle Scholar
  19. [19]
    D. M. Gitman, P. M. Lavrov andI. V. Tyutin:J. Phys. A,23, 41 (1990).ADSCrossRefGoogle Scholar
  20. [20]
    P. G. Bergmann andJ. H. M. Brunings:Rev. Mod. Phys.,21, 480 (1949).MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    P. A. M. Dirac:Phys. Rev.,73, 1092 (1948).MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    P. A. M. Dirac:Can. J. Math.,3, 1 (1951).MathSciNetCrossRefGoogle Scholar
  23. [23]
    V. A. Fock:Teoriya Prostranstva, Vremeni i Tiagoteniya (Gosdarstvennoe Izdatelstvo Techniko-Teoreticheskoi Literaturi, Moskva, 1955); English translation:The Theory of Space, Time and Gravitation (Pergamon Press, Oxford, 1966), 2nd revised edition.Google Scholar
  24. [24]
    V. Tapia:Nuovo Cimento B,103, 441 (1989).MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    I. Robinson andY. Ne'eman:Rev. Mod. Phys.,37, 201 (1965).ADSCrossRefGoogle Scholar
  26. [26]
    R. Arnowitt, S. Deser andC. W. Misner:The Dynamics of General Relativity, inGravitation: an Introduction to Current Research, edited byL. Witten (Wiley, New York, N.Y., 1962).Google Scholar
  27. [27]
    A. Hanson, T. Regge andC. Teitelboim:Constrained Hamiltonian Systems (Accademia Nazionale dei Lincei, Roma, 1976).Google Scholar
  28. [28]
    P. A. M. Dirac:Lectures on Quantum Mechanics (Belfer Granduate School of Science, Yeshiva University, New York, N.Y., 1964).Google Scholar

Copyright information

© Società Italiana di Fisica 1992

Authors and Affiliations

  • V. A. Franke
    • 1
  • V. Tapia
    • 2
  1. 1.Department of Theoretical PhysicsLeningrad State UniversitySt. PetersburgRussia
  2. 2.Centro de Investigación en FísicaUniversidad de SonoraHermosilloMexico

Personalised recommendations