Il Nuovo Cimento B (1971-1996)

, Volume 110, Issue 11, pp 1269–1276 | Cite as

Q-Deformed determinants and a unified realization of boson, fermion and quon algebras

  • Zhaoyan Wu


A new mathematical concept, theq-deformation of the determinant is proposed. By using theq-deformed Slater determinant, a unified realization of boson, fermion and quon algebras is presented. The quon algebra is characterized by the qumutation relationa j a k ° -qa k δ a j = δ jk , which interpolates between Fermi anticommutation and Bose commutation relations. It turns out that for allq∈(−1, 1), the Fock-like spaces are the same, that is the direct sum of all tensor product powers of the single particle spaceh, Open image in new window . This state vector space describes systems of identical particles obeying Boltzmann statistics.


04.40 Continuous media electromagnetic and other mixed gravitational systems 


03.65.Ca Formalism 


02.10.Sp Linear and multilinear algebra matrix theory (finite and infinite) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gentile G.,Nuovo Cimento,17 (1940) 493.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Green H. S.,Phys. Rev.,90 (1953) 270.ADSCrossRefMATHGoogle Scholar
  3. [3]
    Volkov D. V.,Sov. Phys. JETP,9 (1959) 1107;11 (1960) 375.MATHGoogle Scholar
  4. [4]
    Wilczek F. andZee A.,Phys. Rev. Lett.,51 (1983) 2250.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    Greenberg O. W.,Phys. Rev. Lett.,64 (1990) 705.MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    Greenberg O. W.,Phys. Rev. D,43 (1991) 4111.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Greenberg O. W.,Physica A,180 (1992) 419.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Mohapatra R. N.,Phys. Lett. B,242 (1990) 407.MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Govorkov A. B.,Phys. Lett. A,137 (1989) 1.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    Ramberg E. andSnow G. A.,Phys. Lett. B,238 (1990) 438.ADSCrossRefGoogle Scholar
  11. [11]
    Miljanić D. et al., Phys. Lett. B,252 (1990) 487.ADSCrossRefGoogle Scholar
  12. [12]
    Bożjeko M. andSpeicher R.,Commun. Math. Phys.,137 (1991) 519.ADSCrossRefGoogle Scholar
  13. [13]
    Fivel D. I.,Phys. Rev. Lett.,65 (1990) 3361;69 (1992) 2020 (E).MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    Zagier D. B.,Commun. Math. Phys.,147 (1992) 199.MathSciNetADSCrossRefMATHGoogle Scholar
  15. [15]
    Yu T. andWu Z. inProceedings of the XXI International Conference on Differential Geometry Methods in Theoretical Physics (World Scientific, Singapore) 1993.Google Scholar
  16. [16]
    Yu T. andWu Z. Sci. China A,37 (1994) 1472.MathSciNetGoogle Scholar
  17. [17]
    Wu Z. andYu T.,Phys. Lett. A,179 (1993) 266.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • Zhaoyan Wu
    • 1
  1. 1.Center for Theoretical PhysicsJilin UniversityChangchun, JilinPRC

Personalised recommendations