Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 60, Issue 1, pp 97–105 | Cite as

Diffusion length measurements in CdS and CdSe Schottky barrier junctions

  • S. Mora
  • N. Romeo
  • L. Tarricone
Article

Summary

The minority carrier diffusion length has been measured on CdS and CdSe single crystals by means of the surface photovoltage method. By illuminating the samples through semi-transparent metal semiconductor Schottky barriers and for a given photovoltage signal, a linear relation was found between the intensity of light and the absorption length. By extrapolating to zero light intensity such a straight line, the diffusion length was obtained as the intercept with thex-axis. For good accuracy, a least-square fit method was employed to calculate the diffusion length values. The agreement of measurements performed on some Schottky diodes prepared in different ways and displaying different spectral responses confirmed a near independence of the SPV technique on some material parameters and experimental conditions.

Riassunto

È stata misurata la lunghezza di diffusione dei portatori minoritari su monocristalli di CdS e CdSe utilizzando il metodo del fotovoltaggio superficiale (SPV). Illuminando i campioni attraverso barriere Schottky semitrasparenti è stata rilevata una relazione tra l'intensità di luce incidente e la lunghezza di assorbimento per ogni valore del fotovoltaggio. I valori della lunghezza di diffusione sono stati ottenuti mediante estrapolazione ad intensità di luce nulla usando il metodo dei minimi quadrati. L'accordo tra misure eseguite su diodi preparati in modo differente e con differenti risposte spettrali ha confermato una quasi indipendenza della tecnica SPV da alcuni parametri e condizioni sperimentali.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. P. Blood andF. W. Orton:Rep. Prog. Phys.,41, 157 (1978).ADSCrossRefGoogle Scholar
  2. (2).
    L. W. Ankerman, M. F. Millea andM. McColl:J. Appl. Phys.,38, 685 (1967).ADSCrossRefGoogle Scholar
  3. (3).
    R. Gremmelmaier:Proc. IRE,46, 1045 (1958).CrossRefGoogle Scholar
  4. (4).
    W. van Roosbrorek:J. Appl. Phys.,26, 380 (1955).ADSCrossRefGoogle Scholar
  5. (5).
    C. J. Wu andD. S. Wittry:J. Appl. Phys.,49, 2877 (1978).Google Scholar
  6. (6).
    E. D. Stokes andT. L. Chu:Appl. Phys. Lett.,30, 425 (1978).ADSCrossRefGoogle Scholar
  7. (7).
    T. L. Chu, E. D. Stokes andS. S. Chu:Solar Cells,1, 222 (1979/80).CrossRefGoogle Scholar
  8. (8).
    L. Tarricone andE. Gombia:Solar Energy Materials,2, 45 (1979).ADSCrossRefGoogle Scholar
  9. (9).
    S. Mora, N. Romeo andL. Tarricone:Solid State Commun.,33, 1147 (1980).ADSCrossRefGoogle Scholar
  10. (10).
    A. M. Goodman:J. Appl. Phys.,32, 2550 (1961).ADSCrossRefGoogle Scholar
  11. (11).
    E. Y. Wang, C. R. Baraona andH. W. Brondhorst jr.:J. Electron. Soc.,121, 973 (1974).CrossRefGoogle Scholar
  12. (12).
    A. N. Georgobiani:Sov. Phys. Usp.,17, 424 (1974).ADSCrossRefGoogle Scholar
  13. (13).
    H. J. Hovel: inSemiconductor and Semimetals, Vol.11,Solar Cells (New York, N. Y., 1975), p. 123.Google Scholar
  14. (14).
    W. Palz andW. Rupper:Phys. Status Solidi,15, 665 (1966).CrossRefGoogle Scholar
  15. (15).
    S. Mora andN. Romeo:Phys. Status Solidi,15, 599 (1976).Google Scholar
  16. (16).
    D. Redfield:Proceedings of the XIV IEE, Photovoltaic Special Conference (1980).Google Scholar

Copyright information

© Società Italiana di Fisica 1980

Authors and Affiliations

  • S. Mora
    • 1
    • 2
  • N. Romeo
    • 1
    • 2
  • L. Tarricone
    • 1
    • 2
  1. 1.Istituto di Fisica dell'UniversitàParma
  2. 2.CNR-GNSMParma

Personalised recommendations