Cell cycle parameters inAedes albopictus mosquito cells

  • Anna Gerenday
  • Ann Marie Fallon
Growth, Differentiation and Senescence


We have analyzed cell cycle parameters for theAedes albopictus C7-10 mosquito cell line, which has been systematically developed for somatic cell genetics, expression of transfected genes, and synthesis of hormone-inducible proteins. In rapidly cycling cells, we measured a generation time of 10–12 h. The duration of mitosis (M) was ≤1 h, and the DNA synthesis phase (S) required 6 h. UnlikeDrosophila melanogaster Kc cells, in which the G2 gap is substantially longer than G1, in C7-10 cells G1 and G2 each lasted approximately 2h. In these cells, the duration of both S and G2 was independent of the population doubling time, and the increase in population doubling time as cells approached confluency was due to prolongation of G1. When treated with the insect steroid hormone, 20-hydroxyecdysone, C7-10 mosquito cells complete the cycle in progress before undergoing a reversible arrest.

Key words

Aedes albopictus Drosophila melanogaster insect 20-hydroxyecdysone mitosis DNA synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Besson, M. T.; Cordier, G.; Quennedey, B., et al. Variability of ecdysteroid-induced cell cycle alterations inDrosophia Kc sublines. Cell Tissue Kinet. 20:413–425; 1987.PubMedGoogle Scholar
  2. Cherbas, P. The IVth Karlson lecture: ecdysone-responsive genes. Insect Biochem. Mol. Biol. 23:3–11; 1993.PubMedCrossRefGoogle Scholar
  3. Courgeon, A.-M. Action of insect hormones at the cellular level. Exp. Cell Res. 74:327–336; 1972.PubMedCrossRefGoogle Scholar
  4. Defendi, V.; Manson, L. A. Analysis of the life-cycle in mammalian cells. Nature 198:359–361; 1963.CrossRefGoogle Scholar
  5. Delachambre, J.; Besson, M. T.; Quennedey, A., et al. Relationships between hormones and epidermal cell cycles during metamorphosis ofTenebrio molitor. In: Hoffmann, J. A.; Porchert, M., eds., Invertebrate hormones. Berlin, Germany: Springer-Verlag; 1984:245–254.Google Scholar
  6. Dolfini, S.; Courgeon, A. M.; Tiepolo, L.: The cell cycle of an established line ofDrosophila melanogaster cellsin vitro. Experientia 26:1020–1021; 1970.PubMedCrossRefGoogle Scholar
  7. Dulbecco, R.; Vogt, M. Plaque formation and isolation of pure lines with poliomyelitis virus. J. Exp. Med. 99:167–182; 1954.PubMedCrossRefGoogle Scholar
  8. Fallon, A. M. Optimization of gene transfer in cultured insect cells. J. Tissue Cult. Methods 12:1–6; 1989.CrossRefGoogle Scholar
  9. Fallon, A. M.; Stollar, V. The biochemistry and genetics of mosquito cells in culture. In: Maramorosch, K., ed. Advances in cell culture, Vol. 5. New York: Academic Press; 1987:97–137.Google Scholar
  10. Fertig, G.; Kloppinger, M.; Milterburger, H. G. Cell cycle kinetics of insect cell cultures compared to mammalian cell cultures. Exp. Cell. Res. 189:208–212; 1990.PubMedCrossRefGoogle Scholar
  11. Gloor, G. B.; Nassif, N. A.; Johnson-Schlitz, D. M., et al. Targeted gene replacement inDrosophila via Pelement-induced gap repair. Science 253:1110–1117; 1991.PubMedCrossRefGoogle Scholar
  12. Happ, G. M.; MacLeod, B. J.; Szopa, T. M., et al. Cell cycles in the male accessory glands of mealworm pupae. Dev. Biol. 107:314–324; 1985.PubMedCrossRefGoogle Scholar
  13. Hartwell, L. H.; Kastan, M. B. Cell cycle control and cancer. Science 266:1821–1828; 1994.PubMedCrossRefGoogle Scholar
  14. Hatt, P. J.; Moriniere, M.; Oberlander, H., et al. Roles for insulin and ecdysteroids in differentiation of an insect cell line of epidermal origin. In Vitro Cell. Dev. Biol. 30A:717–720; 1994.CrossRefGoogle Scholar
  15. Lan, Q.; Gerenday, A.; Fallon, A. M. Cultured,Aedes albopictus mosquito, cells synthesize hormone-inducible proteins. In Vitro Cell. Dev. Biol. 29A:813–818; 1993.CrossRefGoogle Scholar
  16. Lynn, D. E.; Hink, W. F. Cell cycle analysis and synchronization of the TN-368 insect cell line. In Vitro 14:236–238; 1978.PubMedCrossRefGoogle Scholar
  17. Mazzacano, C. A.; Fallon, A. M. Evaluation of a viral thymidine kinase gene for suicide selection in transfected mosquito cells. Insect Mol. Biol.; 4:125–134; 1995.PubMedGoogle Scholar
  18. Musgrove, E. A.; Sutherland, R. L. Cell cycle control by steroid hormones. Seminars in Cancer Biol. 5:381–389; 1994.Google Scholar
  19. Nouri, N.; Fallon, A. M. Pleiotropic changes in cycloheximide-resistant insect cell clones. In Vitro Cell. Dev. Biol. 23:175–180; 1987.PubMedCrossRefGoogle Scholar
  20. O'Connor, J. D.; Stevens, B. Ecdysteroid effects on the cell cycle ofDrosophila melanogaster cells. In: Roy, A. K.; Clark, J. H., eds. Gene regulation by steroid hormones II. New York: Springer-Verlag; 1983:93–103.Google Scholar
  21. Rizzino, A.; Blumenthal, A. B. Synchronization ofDrosophila cells in culture. In Vitro 14:437–442; 1978.PubMedCrossRefGoogle Scholar
  22. Sherr, C. J. Mammalian G1 cyclins. Cell 73:1059–1065; 1993.PubMedCrossRefGoogle Scholar
  23. Singh, K. R. P. Cell cultures derived from larvae ofAedes albopictus (Skuse) andAedes aegypti (L). Curr. Sci. 36:506–508; 1967.Google Scholar
  24. Stevens, B.; Alvarez, C. M.; Bohman, R., et al. An ecdysteroid-induced alteration in the cell cycle of culturedDrosophila cells. Cell 22:675–682; 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1996

Authors and Affiliations

  • Anna Gerenday
    • 1
  • Ann Marie Fallon
    • 1
  1. 1.Department of EntomologyUniversity of MinnesotaSt. Paul

Personalised recommendations