Skip to main content
Log in

Growth characteristics of cells cultured from two murine models of polycystic kidney disease

  • Growth, Differentiation and Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Polycystic kidney disease (PKD) is characterized by multiple renal cysts that are lined by epithelium and filled with fluid. PKD may result from one of a number of factors, either inherited or environmental. In this study, we have compared two mouse models in which PKD results from a genetic cause. In the C57BL/6J-cpk model, the mutated gene is unknown. In the other model, an SV40 large T antigen transgene causes renal cysts. We examined cultured cells from the kidneys of these mouse models, comparing growth characteristics. Although several features of PKD lead one to expect that the epithelial cells lining the cysts would have an increased rate of proliferation in culture, we found that they did not. The implications of these findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avner, E. D. Renal cystic disease. Insights from recent experimental investigations. Nephron 48:89–93; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Banks-Schiegel, S. P.; Howley, P. M. Differentiation of human epidermal cells transformed by SV40. J. Cell Biol. 96:330–337; 1983.

    Article  Google Scholar 

  • Brinster, R. L.; Chen, H. Y.; Messing, A., et al. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 37:367–379; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Calvet, J. P. Injury and Development in polycystic kidney disease. Curr. Opin. Nephrol. Hypertension 3:340–348; 1994.

    Article  CAS  Google Scholar 

  • Carone, F. A.; Nakamura, S.; Schumacher, B. S. et al. Cyst-derived cells do not exhibit accelerated growth or features of transformed cells in vitro. Kidney Int. 35:1351–1357; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Colby, W. W.; Shenk, T. Fragments of the simian virus 40 transforming gene facilitate transformation of rat embryo cells. Proc. Natl. Acad. Sci. USA 79:5189–5193; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Cowley, B. D., Jr.; Chadwick, L. J.; Grantham, J. J., et al. Sequential protooncogene expression in regenerating kidney following acute renal injury. J. Biol. Chem. 264:8389–8393; 1989.

    PubMed  CAS  Google Scholar 

  • Cowley, B. D., Jr.; Chadwick, L. J.; Grantham, J. J., et al. Elevated protoncogene expression in polycystic kidneys of the C57BL/6J (cpk) mouse. J. Am. Soc. Nephrol. 1:1048–1053; 1991.

    PubMed  Google Scholar 

  • Cowley, B. D., Jr.; Smardo, F. L., Jr.; Grantham, J. J., et al. Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease. Proc. Natl. Acad. Sci. USA 84:8394–8398; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Davisson, M. T.; Guay-Woodford, L. M.; Harris, W., et al. The mouse polycystic kidney disease mutation (cpk) is located on proximal chromosome 12. Genomics 9:778–781; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Gabow, P. A. Polycystic kidney disease: clues to pathogenesis. Kidney Int. 40:989–996; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel, K. R. A simple method of multiple comparisons of means. J. Am. Stat. Assoc. 73:724–729; 1978.

    Article  Google Scholar 

  • Gattone, V. H., II; Calvet, J. P.; Cowley, B. D., Jr., et al. Autosomal recessive polycystic kidney disease in a murine model. Lab. Invest. 59:231–238; 1988.

    PubMed  Google Scholar 

  • Gattone, V. H., II; Grantham, J. J. Understanding human cystic disease through experimental models. Seminars Nephrol. 11:617–631; 1991.

    CAS  Google Scholar 

  • Gimbrone, M. A.; Fareed, G. C. Transformation of cultured human vascular endothelium by SV40 DNA. Cell 9:685–693; 1976.

    Article  PubMed  Google Scholar 

  • Grantham, J. J. Polycystic kidney disease: neoplasia in disguise. Am. J. Kid. Dis. 15:110–116; 1990.

    PubMed  CAS  Google Scholar 

  • Grantham, J. J. 1992. Homer Smith Award. Fluid secretion, cellular proliferation, and the pathogenesis of renal epithelial cysts. J. Am. Soc. Nephrol 3:1841–1857; 1993.

    PubMed  CAS  Google Scholar 

  • Grantham, J. J.; Herron, K. G. An overview of polycystic kidney disease and acquired cystic kidney disease: neoplasia in disguise. Adv. Urol. 3:53–69; 1990.

    Google Scholar 

  • Harding, M. A.; Chadwick, L. J.; Gattone, V. H., II, et al. The SGP-2 gene is developmentally regulated in the mouse kidney and abnormally expressed in collecting duct cysts in polycystic kidney disease. Dev. Biol. 146:483–490; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Harding, M. A.; Gattone, V. H., II; Grantham, J. J., et al. Localization of overexpressed c-myc mRNA in polycystic kidneys of thecpk mouse. Kidney Int. 41:317–325; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Haverty, T. P.; Neilson, E. G. Basement membrane gene expression in polycystic kidney disease. Lab Invest. 58:245–248; 1988.

    PubMed  CAS  Google Scholar 

  • Kelly, K. A.; Agarwal, N.; Reeders, S., et al. Renal cyst formation and multifocal neoplasia in transgenic mice carrying the SV40 early region. J. Am. Soc. Nephrol. 2:84–97; 1991.

    Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Liotta, L. A., et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193; 1982.

    Article  PubMed  CAS  Google Scholar 

  • MacKay, K.; Striker, L. J.; Pinkert, C. A., et al. Glomerulosclerosis and renal cysts in mice transgenic for the early region of SV40. Kidney Int. 32:827–837; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Nadasdy, T.; Laszik, Z.; Lajoie, G., et al. Proliferative activity of cyst epithelium in human renal cystic diseases. J. Am. Soc. Nephrol. 5:1462–1468; 1995.

    PubMed  CAS  Google Scholar 

  • Pardee, A. B. G1 events and regulation of cell proliferation. Science 246:603–608; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Preminger, G. M.; Koch, W. E.; Fried, F. A., et al. Murine congenital polycystic kidney disease: a model for studying development of cystic disease. J. Urol. 127:556–560; 1982.

    PubMed  CAS  Google Scholar 

  • Rankin, C. A.; Grantham, J. J.; Calvet, J. P. c-fos Expression is hypersensitive to serum-stimulation in cultured cystic kidney cells from the C57BL/6J-cpk mouse. J. Cell. Physiol. 152:578–586; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Russell, E. S.; McFarland, E. C. Cystic kidneys (CK). The Mouse Newsl. 56:40; 1977.

    Google Scholar 

  • Seshadri, T.; Campisi, J. Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 247:205–209; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Stoos, B. A.; Naray-Fejes-Toth, A.; Carretero, O. A., et al. Characterization of a mouse cortical collecting duct cell line. Kidney Int. 39:1168–1175; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Taub, M. Growth of primary and established kidney cell cultures in serum-free media. In: Barnes, D. W.; Sirbasku, D.; Sato, G., eds. Cell culture methods for molecular and cell biology. Vol. 3. New York Alan R. Liss; 1984:3–24.

    Google Scholar 

  • Taub, M.; Chuman, L.; Saier, M. H., Jr., et al. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc. Natl. Acad. Sci. USA 76:3338–3342; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Taub, M.; Laurie, G. W.; Martin, G. R., et al. Altered basement membrane protein biosynthesis by primary cultures ofcpk/cpk mouse kidney. Kidney Int. 37:1090–1097; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Taub, M.; Sato, G. Growth of functional primary cultures of kidney epithelial cells in defined medium. J. Cell. Physiol. 105:369–378; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Torres, V. E.; Mujwid, D. K.; Johnson, C. M. Proliferative potential of cystderived epithelial cells in ADPKD. J. Am. Soc. Nephrol. 3:303; 1992.

    Google Scholar 

  • Welling, L. W.; Welling, D. J. Kinetics of cyst development in cystic renal disease. In: Cummings, N. B.; Klahr, S., eds. Chronic renal disease. New York: Plenum; 1985:95–104.

    Google Scholar 

  • Wilson, P. D.; Hreniuk, D.; Gabow, P. A. Abnormal extracellular matrix and excessive growth of human adult polycystic kidney disease epithelia. J. Cell. Physiol. 150:360–369; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P. D.; Schrier, R. W.; Breckon, R. D., et al. A new method for studying human polycystic kidney disease epithelia in culture. Kidney Int. 30:371–378; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P. D.; Sherwood, A. C. Tubulocystic epithelium. Kidney Int. 39:450–463; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ye, M.; Grantham, J. J. The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 329:310–313; 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rankin, C.A., Ziemer, D.M., Maser, R.L. et al. Growth characteristics of cells cultured from two murine models of polycystic kidney disease. In Vitro Cell.Dev.Biol.-Animal 32, 100–106 (1996). https://doi.org/10.1007/BF02723041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723041

Key words

Navigation