Growth characteristics of cells cultured from two murine models of polycystic kidney disease

  • Carolyn A. Rankin
  • Donna M. Ziemer
  • Robin L. Maser
  • Ivy Foo
  • James P. Calvet
Growth, Differentiation and Senescence


Polycystic kidney disease (PKD) is characterized by multiple renal cysts that are lined by epithelium and filled with fluid. PKD may result from one of a number of factors, either inherited or environmental. In this study, we have compared two mouse models in which PKD results from a genetic cause. In the C57BL/6J-cpk model, the mutated gene is unknown. In the other model, an SV40 large T antigen transgene causes renal cysts. We examined cultured cells from the kidneys of these mouse models, comparing growth characteristics. Although several features of PKD lead one to expect that the epithelial cells lining the cysts would have an increased rate of proliferation in culture, we found that they did not. The implications of these findings are discussed.

Key words

polycystic kidney disease proliferation murine models of PKD growth rates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avner, E. D. Renal cystic disease. Insights from recent experimental investigations. Nephron 48:89–93; 1988.PubMedCrossRefGoogle Scholar
  2. Banks-Schiegel, S. P.; Howley, P. M. Differentiation of human epidermal cells transformed by SV40. J. Cell Biol. 96:330–337; 1983.CrossRefGoogle Scholar
  3. Brinster, R. L.; Chen, H. Y.; Messing, A., et al. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 37:367–379; 1984.PubMedCrossRefGoogle Scholar
  4. Calvet, J. P. Injury and Development in polycystic kidney disease. Curr. Opin. Nephrol. Hypertension 3:340–348; 1994.CrossRefGoogle Scholar
  5. Carone, F. A.; Nakamura, S.; Schumacher, B. S. et al. Cyst-derived cells do not exhibit accelerated growth or features of transformed cells in vitro. Kidney Int. 35:1351–1357; 1989.PubMedCrossRefGoogle Scholar
  6. Colby, W. W.; Shenk, T. Fragments of the simian virus 40 transforming gene facilitate transformation of rat embryo cells. Proc. Natl. Acad. Sci. USA 79:5189–5193; 1982.PubMedCrossRefGoogle Scholar
  7. Cowley, B. D., Jr.; Chadwick, L. J.; Grantham, J. J., et al. Sequential protooncogene expression in regenerating kidney following acute renal injury. J. Biol. Chem. 264:8389–8393; 1989.PubMedGoogle Scholar
  8. Cowley, B. D., Jr.; Chadwick, L. J.; Grantham, J. J., et al. Elevated protoncogene expression in polycystic kidneys of the C57BL/6J (cpk) mouse. J. Am. Soc. Nephrol. 1:1048–1053; 1991.PubMedGoogle Scholar
  9. Cowley, B. D., Jr.; Smardo, F. L., Jr.; Grantham, J. J., et al. Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease. Proc. Natl. Acad. Sci. USA 84:8394–8398; 1987.PubMedCrossRefGoogle Scholar
  10. Davisson, M. T.; Guay-Woodford, L. M.; Harris, W., et al. The mouse polycystic kidney disease mutation (cpk) is located on proximal chromosome 12. Genomics 9:778–781; 1991.PubMedCrossRefGoogle Scholar
  11. Gabow, P. A. Polycystic kidney disease: clues to pathogenesis. Kidney Int. 40:989–996; 1991.PubMedCrossRefGoogle Scholar
  12. Gabriel, K. R. A simple method of multiple comparisons of means. J. Am. Stat. Assoc. 73:724–729; 1978.CrossRefGoogle Scholar
  13. Gattone, V. H., II; Calvet, J. P.; Cowley, B. D., Jr., et al. Autosomal recessive polycystic kidney disease in a murine model. Lab. Invest. 59:231–238; 1988.PubMedGoogle Scholar
  14. Gattone, V. H., II; Grantham, J. J. Understanding human cystic disease through experimental models. Seminars Nephrol. 11:617–631; 1991.Google Scholar
  15. Gimbrone, M. A.; Fareed, G. C. Transformation of cultured human vascular endothelium by SV40 DNA. Cell 9:685–693; 1976.PubMedCrossRefGoogle Scholar
  16. Grantham, J. J. Polycystic kidney disease: neoplasia in disguise. Am. J. Kid. Dis. 15:110–116; 1990.PubMedGoogle Scholar
  17. Grantham, J. J. 1992. Homer Smith Award. Fluid secretion, cellular proliferation, and the pathogenesis of renal epithelial cysts. J. Am. Soc. Nephrol 3:1841–1857; 1993.PubMedGoogle Scholar
  18. Grantham, J. J.; Herron, K. G. An overview of polycystic kidney disease and acquired cystic kidney disease: neoplasia in disguise. Adv. Urol. 3:53–69; 1990.Google Scholar
  19. Harding, M. A.; Chadwick, L. J.; Gattone, V. H., II, et al. The SGP-2 gene is developmentally regulated in the mouse kidney and abnormally expressed in collecting duct cysts in polycystic kidney disease. Dev. Biol. 146:483–490; 1991.PubMedCrossRefGoogle Scholar
  20. Harding, M. A.; Gattone, V. H., II; Grantham, J. J., et al. Localization of overexpressed c-myc mRNA in polycystic kidneys of thecpk mouse. Kidney Int. 41:317–325; 1992.PubMedCrossRefGoogle Scholar
  21. Haverty, T. P.; Neilson, E. G. Basement membrane gene expression in polycystic kidney disease. Lab Invest. 58:245–248; 1988.PubMedGoogle Scholar
  22. Kelly, K. A.; Agarwal, N.; Reeders, S., et al. Renal cyst formation and multifocal neoplasia in transgenic mice carrying the SV40 early region. J. Am. Soc. Nephrol. 2:84–97; 1991.Google Scholar
  23. Kleinman, H. K.; McGarvey, M. L.; Liotta, L. A., et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193; 1982.PubMedCrossRefGoogle Scholar
  24. MacKay, K.; Striker, L. J.; Pinkert, C. A., et al. Glomerulosclerosis and renal cysts in mice transgenic for the early region of SV40. Kidney Int. 32:827–837; 1987.PubMedCrossRefGoogle Scholar
  25. Nadasdy, T.; Laszik, Z.; Lajoie, G., et al. Proliferative activity of cyst epithelium in human renal cystic diseases. J. Am. Soc. Nephrol. 5:1462–1468; 1995.PubMedGoogle Scholar
  26. Pardee, A. B. G1 events and regulation of cell proliferation. Science 246:603–608; 1989.PubMedCrossRefGoogle Scholar
  27. Preminger, G. M.; Koch, W. E.; Fried, F. A., et al. Murine congenital polycystic kidney disease: a model for studying development of cystic disease. J. Urol. 127:556–560; 1982.PubMedGoogle Scholar
  28. Rankin, C. A.; Grantham, J. J.; Calvet, J. P. c-fos Expression is hypersensitive to serum-stimulation in cultured cystic kidney cells from the C57BL/6J-cpk mouse. J. Cell. Physiol. 152:578–586; 1992.PubMedCrossRefGoogle Scholar
  29. Russell, E. S.; McFarland, E. C. Cystic kidneys (CK). The Mouse Newsl. 56:40; 1977.Google Scholar
  30. Seshadri, T.; Campisi, J. Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 247:205–209; 1990.PubMedCrossRefGoogle Scholar
  31. Stoos, B. A.; Naray-Fejes-Toth, A.; Carretero, O. A., et al. Characterization of a mouse cortical collecting duct cell line. Kidney Int. 39:1168–1175; 1991.PubMedCrossRefGoogle Scholar
  32. Taub, M. Growth of primary and established kidney cell cultures in serum-free media. In: Barnes, D. W.; Sirbasku, D.; Sato, G., eds. Cell culture methods for molecular and cell biology. Vol. 3. New York Alan R. Liss; 1984:3–24.Google Scholar
  33. Taub, M.; Chuman, L.; Saier, M. H., Jr., et al. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc. Natl. Acad. Sci. USA 76:3338–3342; 1979.PubMedCrossRefGoogle Scholar
  34. Taub, M.; Laurie, G. W.; Martin, G. R., et al. Altered basement membrane protein biosynthesis by primary cultures ofcpk/cpk mouse kidney. Kidney Int. 37:1090–1097; 1990.PubMedCrossRefGoogle Scholar
  35. Taub, M.; Sato, G. Growth of functional primary cultures of kidney epithelial cells in defined medium. J. Cell. Physiol. 105:369–378; 1980.PubMedCrossRefGoogle Scholar
  36. Torres, V. E.; Mujwid, D. K.; Johnson, C. M. Proliferative potential of cystderived epithelial cells in ADPKD. J. Am. Soc. Nephrol. 3:303; 1992.Google Scholar
  37. Welling, L. W.; Welling, D. J. Kinetics of cyst development in cystic renal disease. In: Cummings, N. B.; Klahr, S., eds. Chronic renal disease. New York: Plenum; 1985:95–104.Google Scholar
  38. Wilson, P. D.; Hreniuk, D.; Gabow, P. A. Abnormal extracellular matrix and excessive growth of human adult polycystic kidney disease epithelia. J. Cell. Physiol. 150:360–369; 1992.PubMedCrossRefGoogle Scholar
  39. Wilson, P. D.; Schrier, R. W.; Breckon, R. D., et al. A new method for studying human polycystic kidney disease epithelia in culture. Kidney Int. 30:371–378; 1986.PubMedCrossRefGoogle Scholar
  40. Wilson, P. D.; Sherwood, A. C. Tubulocystic epithelium. Kidney Int. 39:450–463; 1991.PubMedCrossRefGoogle Scholar
  41. Ye, M.; Grantham, J. J. The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 329:310–313; 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1996

Authors and Affiliations

  • Carolyn A. Rankin
    • 1
  • Donna M. Ziemer
    • 1
  • Robin L. Maser
    • 1
  • Ivy Foo
    • 1
  • James P. Calvet
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Kansas Medical CenterKansas City

Personalised recommendations