Two-dimensional gel analysis of proteins in cell lines from the central nervous system of larvalDrosophila

  • Juan F. Santarén
Growth, Differentiation and Senescence


High resolution two-dimensional gel electrophoresis was used to quantitatively analyze the patterns of protein synthesis in three different clones of a nerve cell line (ML-DmBG2) ofDrosophila melanogaster. When patterns of pulse-labeled proteins of the three different clones were compared, I observed quantitative variations affecting the rate of synthesis by twofold or more in 25–30% of the polypeptides and qualitative differences, always affecting less than 2% of the polypeptides. Patterns of protein synthesis were analyzed during the 24 d of culture, revealing both quantitative (increase or decrease; 40%) and qualitative (presence or absence; 3%) differences. More than 70 proteins synthesized in these cultures were secreted into the medium. Among them were two major groups of acidic proteins which disappeared with culture time. When cell lines and intact central nervous systems were compared, large differences in protein synthesis were observed. In fact, only 20% of the synthesized proteins were common to both isolated cells grownin vitro and the original nervous systemin vivo.

Key words

Drosophila central nervous system 2-D gels cell lines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assiego, R.; Santarén, J. F.. High resolution two-dimensional gel analysis of proteins in the central nervous system of larvae ofDrosophila melanogaster. Electrophoresis 13:321–328; 1992.CrossRefGoogle Scholar
  2. 2.
    Cestelli, A.; Savettieri, G.; Salemi, G., et al. Neuronal cell cultures: a tool for investigations in developmental neurobiology. Neurochem. Res. 12:1163–1180; 1992.CrossRefGoogle Scholar
  3. 3.
    Currie, D. A.; Milner, M. J.; Evans, C. W.. The growth and differentiation in vitro of leg and wing imaginal discs cells fromDrosophila melanogaster. Development 102:805–814; 1988.Google Scholar
  4. 4.
    Furst, A.; Mahowald, A. P. Differentiation of primary embryonic neuroblasts in purified neural cell cultures fromDrosophila. Dev. Biol. 109:184–192; 1985.PubMedCrossRefGoogle Scholar
  5. 5.
    Garrels, J. I.. Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J. Biol. Chem. 254:7961–7977; 1979.PubMedGoogle Scholar
  6. 6.
    Garrels, J. I.; Franza, B. R., Jr. The REF52 protein database. J. Biol. Chem. 264:5283–5298; 1989.PubMedGoogle Scholar
  7. 7.
    Goodman, C. S.; Doe, C. Q. Embryonic development of theDrosophila central nervous system. In: The development ofDrosophila melanogaster. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1993:1131–1206.Google Scholar
  8. 8.
    Kim, Y.-T.; Wu, C.-F.. Reversible blockage of neurite development and growth cone formation in neuronal cultures of a temperature-sensitive mutant ofDrosophila. J. Neurosci. 7:3245–3255; 1987.PubMedGoogle Scholar
  9. 9.
    Kim, Y. T.; Wu, C. F.. Distinctions in growth cone morphology and motility between monopolar and multipolar neurons inDrosophila CNS cultures. J. Neurobiol. 22:263–275; 1991.PubMedCrossRefGoogle Scholar
  10. 10.
    Laskey, R. A.; Mills, A. D.. Quantitative film detection of3H and14C in polyacrylamide gels by fluorography. Eur. J. Biochem. 56:335–341; 1975.PubMedCrossRefGoogle Scholar
  11. 11.
    O'Farrell, P. H.. High resolution two-dimensional gel electrophoresis of proteins. J. Biol. Chem. 250:4007–4021; 1975.PubMedGoogle Scholar
  12. 12.
    O'Farrell, P. Z.; Goodman, H. M.; O'Farrell, P. H.. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1142; 1977.PubMedCrossRefGoogle Scholar
  13. 13.
    Peel, D. J.; Milner, M. J.. The diversity of cell morphology in cloned cell lines derived fromDrosophila imaginal discs. Roux's Arch. Dev. Biol. 198;479–482; 1990.CrossRefGoogle Scholar
  14. 14.
    Salvaterra, P. M.; McCaman, R. E.. Choline acetyltransferase and acetylcholine levels inDrosophila melanogaster. A study using two temperature-sensitive mutants. J. Neurosci. 5:903–910; 1985.PubMedGoogle Scholar
  15. 15.
    Santarén, J. F.; Bravo, R.. Immediate induction of a 45k secreted glycoprotein by serum and growth factors in quiescent mouse 3T3 cells. Exp. Cell. Res. 168:494–506; 1987.PubMedCrossRefGoogle Scholar
  16. 16.
    Santarén, J. F.. Towards establishing a protein database ofDrosophila. Electrophoresis 11:254–267; 1990.PubMedCrossRefGoogle Scholar
  17. 17.
    Santarén, J. F.; García-Bellido, A. High resolution two-dimensional gel analysis of proteins in wing imaginal discs: a data base ofDrosophila. Exp. Cell Res. 189:169–176; 1990.PubMedCrossRefGoogle Scholar
  18. 18.
    Santarén, J. F.; Van Damme, J.; Puype, M., et al. Identification ofDrosophila wing imaginal disc proteins by two-dimensional gel analysis and microsequencing. Exp. Cell Res. 206:220–226; 1993.PubMedCrossRefGoogle Scholar
  19. 19.
    Santarén, J. F.; Assiego, R.; García-Bellido, A.. Patterns of protein synthesis in the imaginal discs ofDrosophila melanogaster: a comparison between different discs and stages. Roux's Arch. Dev. Biol. 203:131–139; 1993.CrossRefGoogle Scholar
  20. 20.
    Schneider, I.; Blumental, A. B.Drosophila cell and tissue culture. In: The genetics and biology ofDrosophila. Vol. 2a. New York: Academic Press, Inc. 265–315; 1978.Google Scholar
  21. 21.
    Schubert, D.; Heinemann, S.; Carlisle, W., et al. Clonal cell lines from the rat nervous system. Nature 249:224–227; 1974.PubMedCrossRefGoogle Scholar
  22. 22.
    Secof, R. L.; Alleaume, N.; Teplitz, R. L., et al. Differentiation of neurons and myocites in cell cultures made fromDrosophila gastrulae. Exp. Cell Res. 69:161–173; 1971.CrossRefGoogle Scholar
  23. 23.
    Shields, G.; Sang, J. H.. Characteristics of five cell types appearing during in vitro culture of embryonic material fromDrosophila melanogaster. J. Embryol. Exp. Morphol. 23a:53–69; 1970.Google Scholar
  24. 24.
    Truman, J. W.; Taylor, B. J.; Awad, T. A.. Formation of the adult nervous system. In: the development ofDrosophila melanogaster. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1993:1245–1275.Google Scholar
  25. 25.
    Ui, K.; Ueda, R.; Miyake, T.. Cell lines from imaginal discs ofDrosophila melanogaster. In Vitro Cell. Dev. Biol. 23:707–710; 1987.PubMedCrossRefGoogle Scholar
  26. 26.
    Ui, K.; Ueda, R.; Miyake, T.. In vitro cultures of cells from different kinds of imaginal discs ofDrosophila melanogaster. Jpn. J. Genet. 63:33–41; 1988.CrossRefGoogle Scholar
  27. 27.
    Ui, K.; Nishihara, S.; Sakuma, M., et al. Newly established cell lines fromDrosophila larval CNS express neural specific characteristics. In Vitro Cell. Dev. Biol. 30A:209–216; 1994.CrossRefGoogle Scholar
  28. 28.
    Weiss, P. Principles of development. New York: Holt and Co.; 1939.Google Scholar
  29. 29.
    White, K.; Kankel, D. R.. Patterns of cell division and cell movement in the formation of the imaginal nervous system inDrosophila melanogaster. Dev. Biol. 65:296–321; 1978.PubMedCrossRefGoogle Scholar
  30. 30.
    Wu, C.-F.; Suzuki, N.; Poo, M. M.. Dissociated neurons from normal and mutantDrosophila larval nervous system in cell culture. J. Neurosci. 3:1888–1899; 1983.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 1996

Authors and Affiliations

  • Juan F. Santarén
    • 1
  1. 1.Centro de Biología Molecular “Severo Ochoa,” CSIC-UAMUniversidad Autónoma de MadridMadridSpain

Personalised recommendations