Advertisement

Mycoplasma orale infection affects K+ and Cl currents in the HSG salivary gland cell line

  • Kenneth T. Izutsu
  • Sahba Fatherazi
  • Carol M. Belton
  • Dolphine Oda
  • Frank D. Cartwright
  • George E. Kenny
Infectious Disease/Cellular Pathology

Summary

The relations between K+ channel and Cl channel currents and mycoplasma infection status were studied longitudinally in HSG cells, a human submandibular gland cell line. The K+ channel currents were disrupted by the occurrence of mycoplasma infection: muscarinic activation of K+ channels and K+ channel expression as estimated by ionomycin- or hypotonically induced K+ current responses were all decreased. Similar decreases in ionomycin- and hypotonically induced responses were observed for Cl channels, but only the latter decrease was statistically significant. Also, Cl currents could be elicited more frequently than K+ currents (63% of cases versus 0%) in infected cells when tested by exposure to hypotonic media, indicating that mycoplasma infection affects K+ channels relatively more than Cl channels. These changes occurred in the originally infected cells, were ameliorated when the infection was cleared with sparfloxacin, and recurred when the cells were reinfected. Such changes would be expected to result in hyposecretion of salivary fluid if they occurredin vivo.

Key words

potassium channels chloride channels submandibular gland infection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, M. A. Curing mycoplasma in tissue culture with two newer quinolones: sparfloxacin and OPC17116 [MSc. thesis]. Seattle: University of Washington; 1993.Google Scholar
  2. 2.
    Balter, M. Montagnier pursues the mycoplasma-AIDS link. Science (Washington, DC) 251:271; 1991.CrossRefGoogle Scholar
  3. 3.
    Bauer, F. A.; Wear, D. J.; Angritt, P., et al.Mycoplasma fermentans (incognitus strain) infection in the kidneys of patients with acquired immunodeficiency syndrome and associated nephropathy: a light microscopic, immunohistochemical and ultrastructural study. Human Pathol. 22:932–933; 1991.Google Scholar
  4. 4.
    Blanchard, A.; Montagnier, L. AIDS-associated mycoplasmas. Annu. Rev. Microbiol. 48:687–712; 1994.PubMedCrossRefGoogle Scholar
  5. 5.
    Boatman, E.; Cartwright, F.; Kenny, G. Morphology, morphometry and electron microscopy of HeLa cells infected with bovineMycoplasma. Cell Tissue Res. 170:1–16; 1976.PubMedCrossRefGoogle Scholar
  6. 6.
    Caplan, S.; Gallily, R.; Barenholz, Y. Characterization and purification of a mycoplasma membrane-derived macrophage-activating factor. Cancer Immunol. Immunotherapy 39:27–33; 1994.CrossRefGoogle Scholar
  7. 7.
    Chowdhury, I. H.; Munakata, T.; Koyanagi, Y., et al. Mycoplasma can enhance HIV replication in vitro: a possible cofactor responsible for the progression of AIDS. Biochem. Biophys. Res. Commun. 170: 1365–1367; 1990.PubMedCrossRefGoogle Scholar
  8. 8.
    Clyde, W. A. Mycoplasma species identification based upon growth inhibition by specific antisera. J. Immunol. 92:955–965; 1964.Google Scholar
  9. 9.
    DeBey, M. C.; Jacobson, C. D.; Ross, R. F. Histochemical and morphologic changes of porcine airway epithelial cells in response to infection withMycoplasma hyopneumoniae. Am. J. Vet. Res. 53:1705–1710; 1992.PubMedGoogle Scholar
  10. 10.
    DeBey, M. C.; Ross, R. F. Ciliostasis and loss of cilia induced byMycoplasma hyopneumoniae in porcine tracheal organ cultures. Infect. Immun. 62:5312–5318; 1994.PubMedGoogle Scholar
  11. 11.
    Dimitrov, D. S.; Franzoso, G.; Salman, M., et al.Mycoplasma fermentans (incognitus strain) cells are able to fuse with T lymphocytes. Clin. Infect. Dis. 17:S305-S308; 1993.PubMedGoogle Scholar
  12. 12.
    Fatherazi, S.; Izutsu, K. T.; Wellner, R. B., et al. Hypotonically activated chloride current in HSG cells. J. Membr. Biol. 142:181–193; 1994.PubMedGoogle Scholar
  13. 13.
    Herbelin, A.; Ruuth, E.; Delorme, D., et al.Mycoplasma arginini TUH-14 membrane lipoproteins induce production of interleukin-1, interleukin-6, and tumor necrosis factor alphas by human monocytes. Infect. Immun. 62:4690–4694; 1994.PubMedGoogle Scholar
  14. 14.
    Izutsu, K. T.; Fatherazi, S.; Wellner, R. B., et al. Characteristics and regulation of a muscarinically activated K current in HSG-PA cells. Am. J. Physiol. 266:C58-C66; 1994.PubMedGoogle Scholar
  15. 15.
    Kenny, G. E. Manual of clinical microbiology. In: Balows, A.; Hausler, W. J., et al., ed. Washington, DC: American Society for Microbiology; 1991:478–482.Google Scholar
  16. 16.
    Kenny, G. E.; Cartwright, F. D. Susceptibility ofMycoplasma pneumoniae to several new quinolones, tetracycline, and erythromycin. Antimicrob. Agents Chemother. 35:587–589; 1991.Google Scholar
  17. 17.
    Kenny, G. E.; Cartwright, F. D. Susceptibilities ofMycoplasma hominis andUreaplasma urealyticum to two new quinolones, sparfloxacin and WIN 57273. Antimicrob. Agents Chemother. 35:1515–1516; 1991.PubMedGoogle Scholar
  18. 18.
    Lau, K. R.; Howorth, A. J.; Case, R. M. The effects of bumetanide, amiloride and Ba2+ on fluid and electrolyte secretion in rabbit salivary gland. J. Physiol. (Lond.) 425:407–427; 1990.Google Scholar
  19. 19.
    Lemaitre, M.; Henin, Y.; Destouesse, F., et al. Role of mycoplasma infection in the cytopathic effect induced by human immunodeficiency virus type 1 in infected cell lines. Infect. Immun. 60:742–748; 1992.PubMedGoogle Scholar
  20. 20.
    Lo, S. C.; Hayes, M. M.; Kotani, H., et al. Adhesion onto and invasion into mammalian cells byMycoplasma penetrans: a newly isolated mycoplasma from patients with AIDS. Mod. Pathol. 6:276–280; 1993.PubMedGoogle Scholar
  21. 21.
    Montagnier, L.; Blanchard, A. Mycoplasmas as cofactors in infection due to the human immunodeficiency virus. Clin. Infect. Dis. 17, Suppl. 1: S309-S315; 1993.PubMedGoogle Scholar
  22. 22.
    Nir-Paz, R.; Israel, S.; Honigman, A., et al. Mycoplasmas regulate HIV-LTR-dependent gene expression. FEMS Microbiol. Lett., 128:63–68; 1995.PubMedCrossRefGoogle Scholar
  23. 23.
    Patton, L. L.; Wellner, R. B. Established salivary cell lines. In: Dobrosielski-Vergona, K., ed. Biology of the salivary glands. Boca Raton: CRC Press; 1993:319–341.Google Scholar
  24. 24.
    Pollack, J. D.; Jones, M. A.; Williams, M. V. The metabolism of AIDS-associated mycoplasmas. Clin. Infect. Dis. 17:S267–271; 1993.Google Scholar
  25. 25.
    Russell, W. C.; Newman, C. C.; Williamson, D. H. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature (Lond.) 253:461–462; 1975.CrossRefGoogle Scholar
  26. 26.
    Schiodt, M. J.; Atkinson, J. C.; Greenspan, D., et al. Sialochemistry in human immunodeficiency virus associated salivary gland disease. J. Rheumatol. 19:26–29; 1992.PubMedGoogle Scholar
  27. 27.
    Schiodt, M.; Greenspan, D.; Daniels, T. E., et al. Parotid gland enlargement and xerostomia associated with labial sialadenitis in HIV-infected patients. J. Autoimmunol. 2:415–425; 1989.CrossRefGoogle Scholar
  28. 28.
    Schiodt, M.; Greenspan, D.; Levy, J. A., et al. Does HIV cause salivary gland disease? J. Acquired Immune Defic. Syndr. 3:819–822; 1989.Google Scholar
  29. 29.
    Shirasuna, K.; Sato, M.; Miyazaki, T. A neoplastic epithelial duct cell line established from an irradiated human salivary gland. Cancer 48:745–752; 1981.PubMedCrossRefGoogle Scholar
  30. 30.
    Siegel, S. Nonparametric statistics. New York: McGraw-Hill; 1956: 96 p.Google Scholar
  31. 31.
    Stadtlander, C. T.; Watson, H. L.; Simecka, J. W., et al. Cytopathogenicity ofMycoplasma fermentans (including strainincognitus). Clin. Infect. Dis. 17, Suppl. 1:S289-S301; 1993.PubMedGoogle Scholar
  32. 32.
    Turner, R. J. Mechanisms of fluid secretion by salivary glands. Saliva as a diagnostic fluid. Ann. NY Acad. Sci. 694:24–35; 1993.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang, R. Y.; Shih, J. W.; Grandinetti, T., et al. High frequency of antibodies toMycoplasma penetrans in HIV-infected patients [see comments]. Lancet 340:1312–1316; 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 1996

Authors and Affiliations

  • Kenneth T. Izutsu
    • 1
  • Sahba Fatherazi
    • 1
  • Carol M. Belton
    • 1
  • Dolphine Oda
    • 1
  • Frank D. Cartwright
    • 2
  • George E. Kenny
    • 2
  1. 1.Department of Oral Biology, School of DentistryUniversity of WashingtonSeattle
  2. 2.Department of Pathobiology, School of MedicineUniversity of WashingtonSeattle

Personalised recommendations