Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 109, Issue 12, pp 1303–1315 | Cite as

The geodesic motion in Kaluza-Klein spinning space

  • D. Baleanu
Article

Summary

The geodesic motion of pseudo-classical spinning particles in the space of a Kaluza-Klein monopole in the presence of a scalar-sigma field coupled to the metric tensor field is analysed. The generalized equations for spinning space are investigated and the constants of the motion are derived in terms of the solutions of these equations. The motion on a cone and on a plane is analysed.

Keywords

PACS 04.20.Me Conservation laws and equations of motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. A. Berezin andM. S. Marinov:Ann. Phys. (N.Y.),104, 336 (1977).ADSCrossRefMATHGoogle Scholar
  2. [2]
    R. Casalbuoni:Phys. Lett. B,62, 49 (1976).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A. Barducci, R. Casalbuoni andL. Lusanna:Nuovo Cimento A,35, 377 (1976).ADSCrossRefGoogle Scholar
  4. [4]
    L. Brink, S. Deser, B. Zumino, P. Di Vechia andP. Howe:Phys. Lett. B,64, 43 (1976).CrossRefGoogle Scholar
  5. [5]
    L. Brink, P. Di Vechia andP. Howe:Nucl. Phys. B,118, 76 (1977).ADSCrossRefGoogle Scholar
  6. [6]
    J. W. van Holten;, inCWI syllabus,26, 209 (1990).Google Scholar
  7. [7]
    R. H. Rietdjk andJ. W. van Holten:Class. Quantum Grav.,7, 247 (1990).ADSCrossRefGoogle Scholar
  8. [8]
    J. W. van Holten andR. H. Rietdijk:Symmetries and motions in manifolds, preprint NIKHEF-H/92-08.Google Scholar
  9. [9]
    R. H. Rietdijk andJ. W. van Holten:Class. Quantum Grav.,10, 575 (1993).ADSCrossRefGoogle Scholar
  10. [10]
    G. W. Gibbons, R. H. Rietdijk andJ. W. van Holten:Nucl. Phys. B,404, 42 (1993).ADSCrossRefGoogle Scholar
  11. [11]
    D. J. Gross andM. J. Perry:Nucl. Phys. B,226, 29 (1983).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    R. D. Sorkin:Phys. Lett.,51, 87 (1983).MathSciNetCrossRefGoogle Scholar
  13. [13]
    G. W. Gibbons andN. S. Manton:Nucl. Phys. B,274, 183 (1986);G. W. Gibbons andP. J. Ruback:Phys. Lett. B,188, 226 (1986);Commun. Math. Phys.,115, 267 (1988).MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C. Omero andR. Percacci:Nucl. Phys. B,165, 351 (1980).MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Gell-Mann andB. Zwibach:Phys. Lett. B,141, 333 (1984);147, 111 (1984);Nucl. Phys. B,260, 569 (1985).MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    S. Ianus andM. Visinescu:Class. Quantum Grav.,3, 889 (1986).MathSciNetADSCrossRefMATHGoogle Scholar
  17. [17]
    M. Visinescu:Europhys. Lett.,4, 767 (1987).MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M. Visinescu:Z. Phys. C,60, 337 (1993).ADSCrossRefGoogle Scholar
  19. [19]
    M. Visinescu:Class. Quantum. Grav.,11, 1867 (1994).MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    D. Baleanu:Helv. Phys. Acta,67, 405 (1994).MathSciNetMATHGoogle Scholar
  21. [21]
    M. Visinescu:Phys. Lett. B,339, 28 (1994).MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    W. W. Dietz andR. Rudiger:Proc. R. Soc. London, Ser. A,375, 361 (1981).MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1994

Authors and Affiliations

  1. 1.Institute of Gravity and Space SciencesInstitute of Atomic PhysicsBucharestRomania

Personalised recommendations