Il Nuovo Cimento A (1965-1970)

, Volume 8, Issue 3, pp 575–591 | Cite as

Some properties of nuclear interaction obtained with an ionization spectrometer at proton energies from 10 to 28 GeV

  • W. V. Jones
  • K. Pinkau
  • U. Pollvogt
  • W. K. H. Schmidt
  • R. W. Huggett


Results on the inelasticities and inelastic cross-section of proton interactions in carbon, iron and lead in the energy range from 10 to 28 GeV are presented. These results have been obtained from data taken at the Brookhaven Alternating Gradient Synchrotron during the energy calibration of apparatus consisting of spark chambers, target material and an ionization spectrometer. Some problems and advantages in the use of this apparatus are discussed. The average total inelasticity K - for proton interactions in carbon, iron and lead is compared with results from other work at higher energies. It appears that K - has little dependence on primary energy, but it does depend somewhat on atomic mass numberA of the target material. The effective nucleon-nucleon cross-section has been deduced from the measured inelastic cross-sections in carbon, iron and lead assuming anA2/3 cross-section dependence. The result is consistent with the average value of (44±6) mb obtained from other measurements made over a wide range of energies.

Некоторые свойства ядерного вэаимодействия, полученные с помошью иониэационного спектрометра при знергиях протона от 10 до 28 ГзВ


Сообшаются реэультаты для неупругостей и неупругого поперечного сечения вэаимодействий протонов в углероде, желеэе и свинце в области знергий от 10 до 8 ГзВ. Эти реэультаты были получены иэ данных, вэятых с Брукхевенского синхротрона с сильной фокусировкой во время знергетической градуировки аппаратуры, состояшей иэ искровых камер, материала мищени и иониэационного спектрометра. Обсуждаются некоторые проблемы и преимушества испольэования зтой аппаратуры. Средняя полная неупругость K Emphasis>- для вэаимодействий протонов в углероде, желеэе и свинце сравнивается с реэультатами иэ другой работы при высоких знергиях. Окаэывается, что K Emphasis>- имеет небольщую эависимость от начальной знедгии и эависит до некоторой степени от атомного массового числаA материала мищени. Было определено зффективное нуклон-нуклонное поперечное сечение, исходя иэ иэмеренных неупругих поперечных сечений в углероде, желеэе и свинце, предполагая эависимость поперечного сеченияA2/3. Этот реэультат согласуется со средней величиной (44±6)мб, полученной иэ других иэмерений, проведенных в щирокой области знергий.


Si presentano risultati sulle anelasticità e le sezioni d’urto anelastiche delle interazioni di protoni in carbonio, ferro e piombo nell’intervallo di energie da 10 a 28 GeV. Questi risultati sono stati ottenuti dai dati presi al sincrotrone a gradiente alternato di Brookhaven durante la calibrazione energetica di un’apparecchiatura costituita di camere a scintilla, materiale di bersaglio ed uno spettrometro a ionizzazione. Si discutono alcuni problemi e vantaggi dell’uso di questo apparato. Si confronta l’anelasticità totale media K - per le interazioni dei protoni nel carbonio, ferro e piombo con i risultati di altri esperimenti ad energie maggiori. Risulta che K - dipende poco dall’energia primaria, ma dipende alquanto dal numero di massaA del materiale del bersaglio. Si è dedotta la sezione d’urto nucleone-nucleon effettiva dalle sezioni d’urto anelastiche misurate in carbonio, ferro e piombo ipotizzando una dipendenza delle sezioni d’urto daA2/3. Il risultato è coerente con il valor medio (44±6) mb ottenuto da altre misure eseguite in un più ampio intervallo di energie.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    K. Pinkau, U. Pollvogt, W. Schmidt andR. W. Huggett:Proceedings of the Ninth International Conference on Cosmic Rays, vol.2 (London, 1965), p. 821.ADSGoogle Scholar
  2. (2).
    W. K. H. Schmidt, K. Pinkau, U. Pollvogt andR. W. Huggett:Phys. Rev.,184, 1279 (1969).CrossRefADSGoogle Scholar
  3. (3).
    K. Pinkau, U. Pollvogt, W. K. H. Schmidt andR. W. Huggett:Acta Phys. Hungar. 29, Suppl. 1, 241, 1970, presented at theEleventh International Conference on Cosmic Rays (Budapest, 1969).Google Scholar
  4. (4).
    K. Pinkau, U. Pollvogt, W. K. H. Schmidt andR. W. Huggett:Mitteilungen der Astronomischen Gesellschaft,27, 143 (1969).ADSGoogle Scholar
  5. (5).
    W. V. Jones, K. Pinkau, U. Pollvogt, W. K. H. Schmidt andR. W. Huggett:Nucl. Instr. and Methods.,72, 173 (1969).CrossRefADSGoogle Scholar
  6. (6).
    W. Enge:Zeits. Phys.,185, 456 (1965).CrossRefADSGoogle Scholar
  7. (7).
    W. K. H. Schmidt: Ph. D. Thesis, Kiel (1969), unpublished.Google Scholar
  8. (8).
    G. Cocconi, L. J. Koester andD. H. Perkins: University of California, Lawrence Radiation Laboratory Report UCID-1444, High-Energy Physics Study Seminars no. 28 (part 2) (1961), unpublished.Google Scholar
  9. (9).
    K. Pinkau:Phys. Rev.,139, B 1548 (1965).CrossRefADSGoogle Scholar
  10. (10).
    C. J. Crannell: Ph. D. Thesis, Stanford University (1967), unpublished;Phys. Rev.,161, 310 (1967).Google Scholar
  11. (11).
    D. F. Crawford andH. Messel:Phys. Rev.,128, 2352 (1962).CrossRefADSGoogle Scholar
  12. (12).
    U. Völkel: DESY 67/16, Hamburg (May 1967).Google Scholar
  13. (13).
    We have takenE d to be 2.6 GeV. It has been found empirically (14) that in emulsion the nuclear disintegration energy caused by particles having energies greater than 1 GeV is given by the relationE d (MeV)=124N h+30, whereN h is the number of heavily-ionizing tracks of evaporation nuclei. Figures 13–16 of ref. (14) show the dependence ofN- h on the primary energy of the incoming particle. The average value ofN h appears to increase asE 1/3 up to 10 GeV and has the value of 15 at this energy. More recent measurements indicate that this may be an overestimate (6). Nevertheless, in order to estimateE d for lead nuclei,N- h=15 has been accepted as being valid for interactions in emulsion. Any increase ofN- h with energy above 10 GeV has been neglected. By assuming thatN- h increases asA 1/3, the energy loss per interaction through the disintegration of a lead nucleus is then ∼2.6 GeV.Google Scholar
  14. (14).
    C. F. Powell, P. H. Fowler andD. H. Perkins:The Study of Elementary Particles by the Photographic Method (New York, 1959), p. 464.Google Scholar
  15. (15).
    S. A. Azimov, A. M. Abdullaev, V. M. Myalovsky andT. S. Yuldashbaev:Proceedings of the 1963 International Conference on Cosmic Rays, vol.5, Jaipur (1963), p. 69.ADSGoogle Scholar
  16. (16).
    A. W. Wolfendale:Cosmic Rays (London, 1963).Google Scholar
  17. (17).
    U. Pollvogt: Ph. D. Thesis, Technische Hochschule München (1970), unpublished.Google Scholar
  18. (18).
    N. L. Grigorov, V. E. Nesterov, I. D. Rapoport, I. A. Savenko andG. A. Skuridin:Cosmic Research,5, 362 (1967).ADSGoogle Scholar
  19. (19).
    G. Bellettini, G. Cocconi, A. N. Diddens, E. Lillethun, G. Matthiae, J. P. Scanlon andA. M. Wetherell:Nucl. Phys.,79, 609 (1966).CrossRefGoogle Scholar
  20. (20).
    M. Koshiba, Rapporteur Paper:Proc. of the Tenth International Conference on Cosmic Rays, Calgary (1967), part A, p. 525 (unpublished).Google Scholar

Copyright information

© Società Italiana di Fisica 1972

Authors and Affiliations

  • W. V. Jones
    • 1
  • K. Pinkau
    • 1
  • U. Pollvogt
    • 1
  • W. K. H. Schmidt
    • 1
  • R. W. Huggett
    • 2
  1. 1.Max-Planck-Institut für Physik und Astrophysik Institut für extraterrestrische PhysikGarching bei MünchenMünchen
  2. 2.Department of Physics and AstronomyLouisiana State UniversityBaton Rouge

Personalised recommendations