Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 109, Issue 4, pp 387–401 | Cite as

General theory of linear quantum transformation of Bargmann-Fock space

  • Yong-de Zhang
  • Zhong Tang
Article

Summary

A general theory for the linear transformation in Bargmann-Fock space ofn-mode boson system is presented. It is pointed out that the unbounded operators should not be excluded absolutely and the use of the non-unitary transformations is irresistible in many applications. The group structure of the transformation is analysed and the explicit expressions of the transformation operators in terms of normal ordering are given. As some applications, a series of useful operator identities are given and the decoupling problem for general two-boson interaction is studied.

PACS 03.65.Fd

Algebraic methods PACS 42.50 Quantum optics 

PACS 74.20

Superconductivity: Theory 

PACS 75.10

General theory and models of magnetic ordering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. N. Bogoliubov:Nuovo Cimento,7, 794 (1958).CrossRefGoogle Scholar
  2. [2]
    J. G. Valatin:Nuovo Cimento,7, 843 (1985).MathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Moshinsky andC. Quesne:J. Math. Phys.,12, 1772 (1971).MathSciNetADSCrossRefMATHGoogle Scholar
  4. [4]
    V. I. Arnold:Mathematical Methods of Classical Mechanics (Springer-Verlag, New York, N.Y., 1978).CrossRefMATHGoogle Scholar
  5. [5]
    P. Kramer, M. Moshinsky andT. H. Seligman:Complex extensions of canonical transformations and quantum mechanics, inGroup Theory and Its Applications, edited byE. M. Loebel (Academic Press Inc., 1975).Google Scholar
  6. [6]
    J. D. Louck, M. Moshinsky andK. B. Wolf:J. Math. Phys.,14, 696 (1973).ADSCrossRefGoogle Scholar
  7. [7]
    T. H. Seligman andW. Zahn:J. Phys. G,2, 79 (1976).ADSCrossRefGoogle Scholar
  8. [8]
    H. H. Hackenbroich, T. H. Seligman andW. Zahn:Helv. Phys. Acta,50, 723 (1977).MathSciNetGoogle Scholar
  9. [9]
    L. Martignon andT. H. Seligman:Nucl. Phys. A,286, 177 (1977).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    C. Itzykson andJ. B. Zuber:Quantum Field Theory (McGraw-Hill Inc., 1980).Google Scholar
  11. [11]
    J. R. Klaude andBo-Sture Skagerstam:Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985).Google Scholar
  12. [12]
    Ren Hai andZhang Yong-de:Nuovo Cimento B,103, 473 (1989).ADSCrossRefGoogle Scholar
  13. [13]
    Zhang Yong-de, Ren Yong andFan Hong-yi:Nuovo Cimento A,99, 367 (1988).CrossRefGoogle Scholar
  14. [14]
    J. D. Bjorken andS. D. Drell:Relativistic Quantum Fields (McGraw-Hill Inc., 1965).Google Scholar
  15. [15]
    Zhang Yong-de andTang Zhong:J., Math. Phys. (N.Y.),34, 5639 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1994

Authors and Affiliations

  • Yong-de Zhang
    • 1
  • Zhong Tang
    • 1
  1. 1.Department of Modern PhysicsUSTCHefei, AnhuiPRC

Personalised recommendations