The Indian Journal of Pediatrics

, Volume 56, Issue 5, pp 585–593 | Cite as

The oxygen radical disease in neonatology

  • Ola Didrik Saugstad


Oxygen Radical Xanthine Oxidase Patent Ductus Arteriosus Hypoxanthine Bronchopulmonary Dysplasia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fridovich I. The biology of oxygen radicals.Science 1978; 201: 875–880.PubMedCrossRefGoogle Scholar
  2. 2.
    Gerschman R, Gilbert DL, Nyl SW et al. Oxygen poisoning and X-ray irradiation: a mechanism in common.Science 1954; 119: 624–626.CrossRefGoogle Scholar
  3. 3.
    Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of Superoxide, a potential bactericial agent.J Clin Invest 1973; 52: 741–744.PubMedCrossRefGoogle Scholar
  4. 4.
    Saugstad OD. Hypoxanthine as a measurement of hypoxia.Pediatr Res 1975; 9: 158–161.PubMedGoogle Scholar
  5. 5.
    Bratteby LE, Swanstrom S. Hypoxanthine concentration in plasma during the first two hours after birth in normal and asphyxiated infants.Pediatr Res 1982; 16: 152–155.PubMedCrossRefGoogle Scholar
  6. 6.
    Thiringer K, Karlsson K, Rosen KG, Kjellmer I. The contribution of heart muscle, liver, skeletal muscle and placenta to the elevation of hypoxanthine during asphyxia in the acutely exteriorized foetal lamb.Biol Neonat 1982; 45: 169–182.Google Scholar
  7. 7.
    McCord JM. Oxygen derived free radicals in postischemic tissue injury.N Engl J Med 1985; 312: 159–163.PubMedCrossRefGoogle Scholar
  8. 8.
    Saugstad OD. Hypoxanthine as an indicator of hypoxia: Its role in health and disease through free radical production.Pediatr Res 1988; 23 : 143–150.PubMedCrossRefGoogle Scholar
  9. 9.
    Saugstad OD, Aasen AO. Plasma hypoxanthine levels as a prognostic aid of tissue hypoxia.Europ Surg Res 1980; 12: 123–129.Google Scholar
  10. 10.
    Wayner DDM, Burton GW, Ingold KU, et al. The relative contribution of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma.Biochem Biophys Acta 1987; 924: 408–419.PubMedGoogle Scholar
  11. 11.
    McCord JM, Fridovich I. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein).J Biol Chem 1969, 244: 6049–6055.PubMedGoogle Scholar
  12. 12.
    Autor AP, Frank L, Roberts RJ. Developmental characteristics of pulmonary Superoxide dismutase: relationship to idiopathic respiratory distress syndrome.Pediatr Res 1976; 10 : 154–158.PubMedCrossRefGoogle Scholar
  13. 13.
    Tanswell AK, Freeman BA. Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat. 1. Developmental profiles.Pediatr Res 1984; 18: 584–587.PubMedCrossRefGoogle Scholar
  14. 14.
    Gerdin E, Tyden O, Erikson UJ. The development of antioxidant enzymatic defense in the perinatal rat lung. Activities of Superoxide dismutase, glutathione peroxidase and catalase.Pediatr Res 1985; 19: 687–691.PubMedCrossRefGoogle Scholar
  15. 15.
    Stevens JB, Autor AP. Proposed mechanism for neonatal rat tolerance to normobaric hyperoxia.Fed Proc 1980; 39: 3139–3143.Google Scholar
  16. 16.
    Saugstad OD, Marklund SL. High activities of erythrocyte glutathione peroxidase in patients with the Lesch-Nyhan syndrome.Acta Med Scand 1988; 224: 281–285.PubMedCrossRefGoogle Scholar
  17. 17.
    Stocks J, Gutteridge JMC, Sharp RJ et al. The inhibition of lipid autoxidation by human -serum and its relation to serum proteins and alpha-tocopherol.Clin Sci 1974; 47: 223–233.Google Scholar
  18. 18.
    Gutteridge JMC, Stocks J. Caeruloplasmin: Physiological, and pathological perspectives.CCR Crit Rev Clin Lab Sci 1981; 14 : 257–329.Google Scholar
  19. 19.
    Sullivan JL. Iron, plasma antioxidants, and the “Oxygen radical disease of prematurity”.Am J Dis Child 1988; 142: 1341–1344.PubMedGoogle Scholar
  20. 20.
    Northway WH, Rosan RC, Porter DY. Pulmonary disease following respiratory therapy of hyaline membrane disease.N Engl J Med 1967; 276: 357–368.PubMedCrossRefGoogle Scholar
  21. 21.
    Goetzman BW. Understanding bronchopulmonary dysplasia.Am J Dis Child 1986; 140: 332–334.PubMedGoogle Scholar
  22. 22.
    Nickerson BG. Bronchopulmonary dysplasia. Chronic pulmonary disease following neonatal respiratory failure.Chest 1985; 4: 528–535.Google Scholar
  23. 23.
    Saugstad OD, Hallman M, Abraham J et al. Hypoxanthine and oxygen inducedlung injury: a basic mechanism of tissue damage?Pediatr Res 1984; 18 : 501–504.PubMedGoogle Scholar
  24. 24.
    Saugstad OD, Hallman M, Becher G et al. Respiratory failure caused by intratracheal saline: Additive effect of xanthine oxidase.Biol Neonat 1988; 54: 61–67.Google Scholar
  25. 25.
    Saugstad OD, Becher G, Grossmann M et al. Acute and chronic lung damage in guinea pigs induced by xanthine oxidase.Intensive Care Medicine 1987; 13: 30–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Kinsey VE, Arnold HJ, Kalina RE et al. PaO2 levels and retrolental fibroplasia: A report of the cooperative study.Pediatrics 1977; 60 : 655–668.PubMedGoogle Scholar
  27. 27.
    Flynn JT. Retinopathy of prematurity.Pediatr Ophtalmol 1987; 34: 1487–1516.Google Scholar
  28. 28.
    Saugstad OD, Rognum TO. High post mortem levels of hypoxanthine in the vitreous humor of premature babies with respiratory distress syndrome.Pediatrics 1988; 81: 395–398.PubMedGoogle Scholar
  29. 29.
    Clyman RI, Saugstad OD, Mauray F. Reactivé oxygen metabolites relax the lamb ductus arteriosus by stimulating prostaglandin production.Circulat Res 1989; 64: 1–8.PubMedGoogle Scholar
  30. 30.
    Thiringer K, Hrbek A, Karlsson K et al. Postasphyxiai cerebral survival in newborn sheep after treatment with oxygen free radical scavengers and a calcium antagonist.PediatrRes 1987; 22: 62–66.Google Scholar

Copyright information

© Dr. K C Chaudhuri Foundation 1989

Authors and Affiliations

  • Ola Didrik Saugstad
    • 1
  1. 1.Department of Pediatrics and the Institute for Surgical ResearchThe National Hospital of NorwayNorway

Personalised recommendations