Il Nuovo Cimento A (1971-1996)

, Volume 53, Issue 3, pp 577–591 | Cite as

Vector and spinor current algebra and theN/D method

  • I. T. Drummond


AnN/D model of weak amplitudes analogous to the ladder approximation of Bronzan, Gerstein, Lee and Low (1) is discussed. It is applied to the case of vector-vector current commutators and spinor-spinor anticommutators. The model does not of course yield the detailed assumptions of current algebra but is consistent with them. It shows how these assumptions are compatible with the analyticity properties usually assumed for invariant amplitudes. By means of the model it is possible to indicate the problems involved if a bootstrap calculation is to yield the results of current algebra.

Векторная и спинорная алгебра токов иN/D метод


ОбсуждаетсяN/D модель для слабых амплитуд, аналогичная лестничному приближению Бронзана, Герстейна, Ли и Лоу. Модель применяется к случаю коммутаторов вектор-векторных тков и спинор-спинорных антикоммутаторов. Конечно, это модель не дает детальных предположений алгебры токов, но находится в соответствеии с ними. Показывается, как зти предположения совместимы со свойствами аналитичности, обычно предполагаемыми для инвартных амплитуд. С помощяю этой модели возможно указать встречающиеся проблемы, если бутстрэп-вычисления должны давать результаты алгебры токов.


Si discute un modelloN/D di ampiezze deboli analogo all’approssimazione a scalini di Bronzan, Gerstein, Lee e Low. Questo modello si applica al caso di commutatori di corrente vettore-vettore e agli anticommutatori spinore-spinore. Il modello non dà naturalmente le ipotesi dettagliate dell’algebra delle correnti, ma è consistente con esse. Si mostra come queste ipotesi siano compatibili con le proprietà di analiticità comunemente ammesse per ampiezze invarianti. Tramite il modello è possibile indicare i problemi coinvolti se un calcolo a «bootstrap» deve dare i risultati dell’algebra delle correnti.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. B. Bronzan, I. S. Gerstein, B. W. Lee andF. E. Low:Phys. Rev. Lett.,18, 32 (1967); and preprint:Current algebra and non-Regge behaviour of weak amplitudes.ADSCrossRefGoogle Scholar
  2. (2).
    V. Singh:Phys. Rev. Lett. 18, 36 (1967).ADSCrossRefGoogle Scholar
  3. (3).
    R. F. Dashen andS. C. Frautschi:Phys. Rev.,145, 1287 (1966).ADSCrossRefGoogle Scholar
  4. (4).
    M. O. Taha:An approach to currents and the derivation of current algebra, preprint.Google Scholar
  5. (5).
    The form assumed is consistent with that postulated byM. Gell-Mann:Phys. Rev.,125, 1067 (1962).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    S. Fubini, G. Furlan andC. Rossetti:Nuovo Cimento,40, 1171 (1965);D. Amati, R. Jengo andE. Remiddi:Phys. Rev. Lett.,22, 674 (1966); and preprint:Families of sum rules from current algebra (CERN Report T.H. 720). As in the discussion by the above authors infinite mass terms are being neglected. Their effect is discussed by:D. Amati, R. Jengo andE. Remiddi: same title as above (CERN Report TH 759), preprint.ADSMathSciNetCrossRefGoogle Scholar
  7. (7).
    S. Mandelstam:Nuovo Cimento,30, 1113 (1963).MathSciNetCrossRefGoogle Scholar
  8. (8).
    J. Bjorken:Phys. Rev. Lett.,4, 473 (1960).ADSCrossRefGoogle Scholar
  9. (9).
    R. E. Hwa andJ. Nuyts:Phys. Rev.,151, 1215 (1966).ADSMathSciNetCrossRefGoogle Scholar
  10. (10).
    R. F. Dashen andS. C. Frautschi:Phys. Rev.,143, 1171 (1966).ADSMathSciNetCrossRefGoogle Scholar
  11. (11).
    S. Fubini, G. Segre andJ. D. Walecka:Ann. Phys.,39, 381 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1968

Authors and Affiliations

  • I. T. Drummond
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridge

Personalised recommendations