Il Nuovo Cimento B (1971-1996)

, Volume 74, Issue 1, pp 67–82 | Cite as

Questions on universal constants and four-dimensional symmetry from a broad viewpoint.—I

  • J. P. Hsu


It is demonstrated that there is a flexibility in clock synchronizations and that the four-dimensional symmetry framework can be viewed broadly. A new viewpoint of the four-dimensional framework is discussed on the basis of a common time for all observers who may be in motion relative to each other. Such a common time can be realized by a special method of clock synchronization and it isnot absolute in the Newtonian sense. We suggest that the truly universal constants in physics areJ=0.35·10−37 g cm and\(\bar e\)=1.6 · 10-20 e.m.u. rather than,e (in e.s.u.) and the speed of light becauseJ and\(\bar e\) are independent of a special arrangement of the measuring apparatus—such as clock synchronizations.


Special relativity 


Si dimostra che esiste una flessibilità nella sincronizzazione degli orologi e che il sistema a simmetria quadridimensionale può essere esaminato in un contesto piú ampio. Si discute un nuovo modo di vedere il sistema quadridimensionale sulla base di un tempo comune a tutti gli osservatori che possono essere in movimento l’uno rispetto all’altro. Tale tempo comune può essere realizzato con un metodo speciale di sincronizzazione degli orologi enon è assoluto nel senso newtoniano. Si suggerisce che le costanti realmente universali in fisica sianoJ=0.35·10−37 g cm e\(\bar e\)=1.6 · 10-20 e.m.u., piuttosto che ħ,e (in e.s.u.) e la velocità della luce, poichéJ e\(\bar e\) non dipendono da una speciale sistemazione del sistema di misurazione—come la sincronizzazione degli orologi.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. P. Hsu:Nuovo Cimento B,61, 249 (1981); see alsoPhys. Lett. B,119, 328 (1982);Lett. Nuovo Cimento,28, 128 (1980);Phys. Rev. Lett.,42, 934, 1720 (1980). The author should like to thank Prof.S. Bergia for correspondence concerning the evolution of the Universe from the viewpoint of a cosmic time.ADSCrossRefGoogle Scholar
  2. (2).
    The possibility of introducing a cosmic time in cosmology is well known, see, for example,R. Adler, M. Bazin andM. Schiffer:Introduction to General Relativity (New York, N. Y., 1965), p. 62 and 339.Google Scholar
  3. (3).
    A. A. Logunov andA. N. Tavkhelidze:Nuovo Cimento,29, 380 (1963);R. N. Faustov:Ann. Phys. (N. Y.),78, 176 (1973). To avoid the difficulty of the relativistic time in the bound-state wave function, these authors introduced a single-time wave function to deseribe bound states of many particles.MathSciNetCrossRefGoogle Scholar
  4. (4).
    The fundamental length will not be discussed here because of the lack of a well-established theory. For recent discussion of the possible fundamental length in quantum field theories, seeJ. P. Hsu:Nuovo Cimento A,55, 145 (1980);56, 1, (1980);J. P. Hsu andE. Mac:Nuovo Cimento B,49, 55 (1979), and references therein.ADSCrossRefGoogle Scholar
  5. (5).
    J. P. Hsu:Found. Phys.,8, 371 (1978);6, 317 (1976).ADSCrossRefGoogle Scholar
  6. (6).
    For a comprehensive review of the birth of special relativity, seeS. Bergia: inEintein, A Centenary Volume (Cambridge, Mass., 1979), p. 65.Google Scholar
  7. (7).
    W. F. Edwards:Am. J. Phys.,31, 482 (1963);J. A. Winnie:Philos. Sci.,37, 81, 223 (1970);R. Mansouri andR. U. Sexl:Gen. Rel. Grav.,8, 497 (1977);J. P. Hsu andT. N. Sherry:Found. Phys.,10, 57 (1980);Zhang Yuan-Zhong:Experimental Foundations of Special Relativity, Chapt.1 (Beijing, 1979).ADSCrossRefMATHGoogle Scholar
  8. (9).
    The present four-dimensional symmetry framework can be used to formulate quantum electrodynamics and other field theories,e.g., such as those inJ. P. Hsu:Phys. Rev. Lett.,36, 646 (1976);42, 934 (1979);Phys. Rev. D,5, 981 (1972);Found. Phys.,8, 371 (1978);6, 317 (1976).ADSCrossRefMATHGoogle Scholar
  9. (10).
    The Heavyside and Gaussian systems are more suitable for microscopic problems involving the electrodynamics of individual charged particles. See, for example,J. D. Jackson:Classical Electrodynamics (New York, N. Y., 1966), appendix p. 611. For covariant formulations in the MKS system of units, seeW. K. H. Panofsky andM. Phillips:Classical Electricity and Magnetism (Reading, Mass., 1962), p. 437.Google Scholar
  10. (11).
    P. A. M. Dirac:Sci. Am.,208, 48 (1963).CrossRefGoogle Scholar
  11. (12).
    G. Wentzel:Quantum Theory of Fields (New York, N. Y., 1949), p. 138;F. J. Dyson:Phys. Rev.,91, 1543 (1953);Ruan Tu-nan, Zhu Hsi-Quen, Ho Tso-xiu, Qing Cheng-rui andChao Wei-qin:Proceedings of the 1980 Guangzhou Conference on Theoretical Particle Physics, Vol.2 (Beijing, 1980), p. 1390.Google Scholar
  12. (13).
    See, for example.R. Hakim:J. Math. Phys. (N. Y.),8, 1315 (1967);J. P. Hsu andT. Y. Shi:Phis. Rev. D,26, 2745 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1983

Authors and Affiliations

  • J. P. Hsu
    • 1
  1. 1.Space Sciences LaboratoryNASA/Marshall Space Flight CenterHuntsville

Personalised recommendations