Il Nuovo Cimento B (1971-1996)

, Volume 81, Issue 1, pp 7–20 | Cite as

On a Lie-admissible theory of gravity

  • M. Gasperini


By using the notion of exterior admissible forms, the classical, geometrical structure of a possible Lie-admissible theory of gravity is investigated. In particular, it is shown that a nonsymmetric metric tensor and a nonmetric connection are included naturally in this framework, so that the nonsymmetric and metric-affine theories of gravity may be interpreted as particular cases of a more general Lie-admissible theory.


04.50 Unified field theories and other theories of gravitation 

О Ли-допустимой теории гравитации


Используя понятие внешне-допустимых форм, предлагается классическая геометрическая структура возможной Ли-допустимой теории гравитации. В частности, показывается, что в этом подходе естественным образом включается несимметрический метрический тензор и неметрическая связь. Таким образом, несимметричные и метричные афинные теории гравитации могут быть интерпретированы, как частные случаи более общей Ли-допустимой теории.


Usando la nozione di forme esterne ammissibili, si studia la struttura classica e geometrica di una possibile teoria Lie-ammissibile della gravità. In particolare, si mostra che un tensore metrico non simmetrico ed una connessione non metrica, possono essere inclusi in modo naturale in questa struttura, cosí che le teorie gravitazionali non simmetriche e metriche-affini possono essere interpretate come casi particolari di una piú generale teoria Lie-ammissibile.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. M. Santilli:Hadronic J.,1, 223, 574 (1978).MathSciNetMATHGoogle Scholar
  2. (2).
    R. M. Santilli:Foundation of Theortical Mechanics. II:Birkhoffian Generalization of Hamiltonian Mechanics (Springer Verlag, New York, N. Y., 1982).Google Scholar
  3. (3).
    R. M. Santilli:Lie-Admissible Approach to Hadronic Structure, Vol.2 (Hadronic Press, Nonantum, Mass., 1982).MATHGoogle Scholar
  4. (4).
    R. M. Santilli:Lett. Nuovo Cimento,33, 145 (1982).ADSCrossRefGoogle Scholar
  5. (5).
    R. M. Santilli:Lett. Nuovo Cimento,37, 545 (1983).MathSciNetADSCrossRefGoogle Scholar
  6. (6).
    H. C. Myung andR. M. Santilli:Hadronic J.,5, 1277 (1982).MathSciNetGoogle Scholar
  7. (7).
    R. Mignani:Hadronic J.,5, 1120 (1982).MathSciNetGoogle Scholar
  8. (8).
    R. M. Santilli:Lett. Nuovo Cimento,37, 337 (1983).MathSciNetCrossRefGoogle Scholar
  9. (9).
    R. M. Santilli:Lett. Nuovo Cimento,38, 509 (1983).MathSciNetCrossRefGoogle Scholar
  10. (10).
    The Lie-admissible algebra was introduced byA. A. Albert:Trans. Am. Math. Soc.,64, 552 (1948).CrossRefMATHGoogle Scholar
  11. (11).
    Proceedings of the II Workshop on Lie-admissible formulations, inHadronic J.,2, 1252 (1979);3, 1 (1979).Google Scholar
  12. (12).
    Proceedings of the III Workshop on Lie-admissible formulations, inHadronic J.,4, 183, 608, 1166 (1981).Google Scholar
  13. (13).
    Proceedings of the First International Conference on Nonpotential Interactions and their Lie-admissible treatment, inHadronic J.,5, 245, 679, 1194, 1627 (1982).Google Scholar
  14. (14).
    For an extensive bibliography see alsoM. L. Tomber:Hadronic J.,3, 507 (1979);4, 1318, 1444 (1981).MathSciNetMATHGoogle Scholar
  15. (15).
    See, for example,F. W. Hehl, P. von der Heyde, G. D. Kerlick andJ. M. Nester:Rev. Mod. Phys.,48, 393 (1976).ADSCrossRefGoogle Scholar
  16. (16).
    R. Utiyama:Phys. Rev.,101, 1597 (1956).MathSciNetADSCrossRefMATHGoogle Scholar
  17. (17).
    T. W. Kibble:J. Math. Phys. (N.J.),2, 212 (1961).MathSciNetADSCrossRefMATHGoogle Scholar
  18. (18).
    See, for example,F. W. Hehl, E. A. Lord andL. L. Smalley:Gen Rel. Grav.,13, 1037 (1981).MathSciNetADSCrossRefMATHGoogle Scholar
  19. (19).
    A. Einstein andE. G. Strauss:Ann. Math.,47, 731 (1946).CrossRefMATHGoogle Scholar
  20. (20).
    D. W. Sciama:Nuovo Cimento,8, 417 (1958).MathSciNetCrossRefMATHGoogle Scholar
  21. (21).
    K. Borchsenius:Nuovo Cimento A,46, 403 (1978).MathSciNetADSCrossRefGoogle Scholar
  22. (22).
    K. Borchsenius:Nuovo Cimento A,68, 131 (1982).ADSCrossRefGoogle Scholar
  23. (23).
    J. W. Moffat:Phys. Rev. D,19, 3557 (1979);23, 2870 (1981).ADSGoogle Scholar
  24. (24).
    J. W. Moffat: inThe Origin and Evolution of Galaxies, edited byV. DeSabbata (World Scientific, Singapore, 1982), p. 127, and references therein.Google Scholar
  25. (25).
    A. Trautman:Inst. Naz. Alta Mat. Sym. Mat.,12, 139 (1973).MathSciNetGoogle Scholar
  26. (26).
    A. Trautman:Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,20, 185, 503, 895 (1972).MathSciNetGoogle Scholar
  27. (27).
    R. M. Santilli:Lie-admissible Approach to Hadronic Structure, Vol.2, Chapter 4 (Hadronic Press, Nonantum, Mass., 1982).MATHGoogle Scholar
  28. (28).
    See, for example,D. Ivanenko andG. Sardanashvily:The gauge treatment of gravity, to appear inPhys. Rep. Google Scholar
  29. (29).
    M. W. Kalinowski:J. Math. Phys. (N. Y.),24, 1835 (1983);Ann. Phys. (N. Y.),148, 214 (1983).MathSciNetADSCrossRefMATHGoogle Scholar
  30. (30).
    U. Lindström andJ. Grunberg:Nuovo Cimento B,75, 171 (1983).Google Scholar
  31. (31).
    R. M. Santilli:Lie-admissible Approach to Hadronic Structure, Vol.3, Chapter 4 (Hadronic Press, Nonantum, Mass., 1982).MATHGoogle Scholar
  32. (32).
    M. Gasperini:Hadronic J.,6, 935 (1983); see alsoLie-isotopic lifting of gauge theories, to appear in theProceedings of the first Workshop on Hadronic Mechanics, inHadronic J.,6, No. 6 (November 1983).MathSciNetMATHGoogle Scholar
  33. (33).
    R. M. Santilli: private communication.Google Scholar

Copyright information

© Società Italiana di Fisica 1984

Authors and Affiliations

  • M. Gasperini
    • 1
  1. 1.Istituto di Fisica Teorica dell’UniversitàTorinoItalia

Personalised recommendations