Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 63, Issue 1, pp 386–410 | Cite as

Vibrational relaxation of the symmetricv6(A1)-vibration of thiophene in some liquid thiophene mixtures. Intermolecular interactions and motional characteristics

  • W. Schmitz
Article

Summary

Raman isotropic line shapes of thev6(A1)-vibration of thiophene are analysed by two characteristic parameters of their associated vibrational relaxation function for 19 different liquid mixtures, including isotopic dilution as well as changes of temperature and concentration. The data support the view that several intermolecular interactions are operative for relaxation with different relevant motions affecting them, both in resonant and in «local field» coupling.

Вебрационная релаксация симметричногоν6(A1)-колебания тиофена в некоторых жидких смесях тиофена. Межмолекулярные взаимодействия и характеристики движения

Резюме

Анализируются рамановские изотропные формы линий дляν6(A1)-колебания тиофена с помощью двух характеристических параметров для функции релаксации колебаний. Исследование проводится в 19 различных жидких смесях, включая изотопное разбавление, а также изменение температуры и концентрации. Полученные данные подтверждают некоторые межмолекулярные взаимодействия, влияющие на релаксацию.

Riassunto

Si analizzano forme di linea isotropiche di Raman della vibrazionev6(A1) del tiofene mediante due parametri caratteristici della loro funzione di rilassamento vibrazionale associata per 19 diverse miscele liquide, tenendo conto della diluizione isotopica e dei cambiamenti di temperatura e concentrazione. I dati sostengono l’opinione che molte interazioni intermolecolari siano operative per rilassamento con diversi movimenti rilevanti che le influenzano, nell’accoppiamento sia risonante che di «campo locale».

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    L. A. Nafie andW. L. Peticolas:J. Chem. Phys.,57, 3145 (1972) (see (2),W. G. Rothschild:J. Chem. Phys.,65, 455, also, and (3a),W. Schmitz: work for the Dissertation in Natural Sciences, part I, Technische Universität Braunschweig (1979), especially p. 110–180, 371–443, 519–567 and appendices D and E (p. 614–643), Chapt. 3, for discussion).ADSCrossRefGoogle Scholar
  2. (2).
    For exampleW. G. Rothschild:J. Chem. Phys.,65, 455, 2958 (1976);53, 990 (1970) (complex of CHCl3/benzene in analogy to the solution observed here:J. Chem. Phys.,55, 1402 (1971);W. G. Rothschild:Chem. Phys. Lett.,9, 149 (1971), and personal communication).ADSCrossRefGoogle Scholar
  3. (3).
    a)W. Schmitz: work for the Dissertation in Natural Sciences, part I, Technische Universität Braunschweig (1979), especially p. 110–180, 371–443, 519–567 and appendies D and E (p. 614–643);b)W. Schmitz: dto., p. 140–180 and part II,Experimental Results, Technische Universität Braunschweig (1981).Google Scholar
  4. (4).
    See also (3a),W. Schmitz: work for the Dissertation in Natural Sciences, part I, Technische Universität Braunschweig (1979), especially p. 110–180, 371–443, 519–567, and appendices D and E (p. 614–643), Chapter 6.2, for discussion;A. Laubereau:Proceedings of the V International Conference on Raman Spectroscopy (Freiburg, 1976), p. 353;J. E. Griffiths, M. Clerc andP. M. Rentzepis:J. Chem. Phys.,60, 3824 (1974);J. E. Griffiths:Advances in Raman Spectroscopy (1973), p. 444;D. J. Diestler:Chem. Phys. Lett.,39, 39 (1976), and personal communication;S. H. Lin:J. Chem. Phys.,65, 1053 (1976);B. Talin, L. Galatry andL. Klein:J. Chem. Phys.,66, 2789 (1977);J. H. Campbell, J. F. Fisher andJ. Jonas:J. Chem. Phys.,61, 346 (1974).Google Scholar
  5. (5).
    R. M. Lynden-Bell:Mol. Phys.,33, 907 (1977);36, 1529 (1978); see alsoP. W. Atkins:Molecular Quantum Mechanics (Oxford, 1970).ADSCrossRefGoogle Scholar
  6. (6).
    G. Döge: Habilitationsschrift, Technische Universität Braunschweig (1971);Z. Naturforsch. Teil A,28, 919 (1973);A. Khuen: Dissertation, Technische Universität Braunschweig (1978).Google Scholar
  7. (7).
    C. H. Wang:Mol. Phys.,33, 207 (1977);R. K. Wertheimer:Mol. Phys.,35, 257 (1978);38, 797 (1979);D. C. Knauss:Mol. Phys.,36, 413 (1978);B. P. Hills:Mol Phys.,35, 793 (1978) (and following articles). For the «generalized hydrodynamics» background seeD. Forster:Hydrodynamic fluctuations, broken symmetry and correlation functions, inFrontiers in Physics, No. 47 (Reading, Mass. 1975).ADSCrossRefGoogle Scholar
  8. (8).
    For exampleR. Kubo:Proceedings of the Scottish Universities’ Summer School at Newbattle Abbey, 1961 (Edinburgh, 1961), p. 23.Google Scholar
  9. (9).
    P. Desplanques: Thèse de Doctorat és Sciences Physiques, Université des Sciences Techniques de Lille (1974) (and references therein; for exampleF. Bliot andE. Constant:Chem. Phys. Lett.,18, 253 (1973).Google Scholar
  10. (10).
    J.-P. Marault: Thèse de Doctorat és Sciences Physiques, Université Pierre et marie Curie, Paris VI (1976); see also (9)P. Desplanques: Thèse de Doctorat és Sciences Physiques, Université des Sciences Techniques de Lille (1974).Google Scholar
  11. (11).
    R. E. Wilde:J. Chem. Phys.,71, 3263 (1979).ADSCrossRefGoogle Scholar
  12. (12).
    A. Schäffer: unpublished work, Technische Universität Braunschweig (1973);G. Döge andA. Schäffer:Ber. Bunsenges. Phys. Chem.,77, 682 (1973). See also (3 b)W. Schmitz: dto., p. 140–1480 and part II,Experimental Results, Technsiche Universität Braunschweig (1981). and (3 a)W. Schmitz: work for the Dissertation in Natural Sciences, part I, Technische Universität Braunschweig (1979), especially p. 110–180, 371–443, 519–567 and appendices D and E (p. 614–643), p. 28–48, and (8) for exampleR. Kubo:Proceedings of the Scottish Universities’ Summer School at Newbattle Abbey, 1961 (Edinburgh, 1961), p. 23.Google Scholar
  13. (13).
    Theoretical basis:A. S. Davydov:Theory of Molecular Excitons (New York, N. Y., 1962).Google Scholar
  14. (14).
    E. N. Bolotina, A. G. Finkel′, L. M. Sverdlov andL. V. Pronina:Ž. Strukt. Khim.,14, 629 (1971);N. K. Sidorov andL. P. Kalashnikova:Opt. Spectr.,35, 247 (1967).Google Scholar
  15. (15).
    D. Scheibe: Diplomarbeit, Technische Universität Braunschweig (1975).Google Scholar
  16. (16).
    W. Schmitz: Diplomarbeit, Technische Universität Braunschweig (1974).Google Scholar
  17. (17).
    G. H. Findenegg andA. Würflinger: contributions and discussions to and at theSommerschule über «Physik des flüssigen Zustands», St. Georgen, Längsee, Kärnten, 12.–23.9.1977 (script).Google Scholar
  18. (18).
    M. A. Siddiqi andF. Kohler:Ber. Bunsenges. Phys. Chem.,85, 17 (1981).CrossRefGoogle Scholar
  19. (19).
    M. Possiel: Dissertation, Technische Universität Braunschweig (1981);A. Kratochwill, J. U. Weidnek andH. Zimmermann:Ber. Bunsenges. Phys. Chem.,77, 408 (1973); for different interaction environments seeJ. Yarwood, K. Ackroyd, K. E. Arnold, G. Döge andR. Arndt:Chem. Phys. Lett.,77, 239 (1981).Google Scholar
  20. (20).
    H. Versmold: Habilitationsschrift, Universität Karlsruhe (1976).Google Scholar
  21. (21).
    Earlier concept:A. F. Bondarev andA. J. Mardaeva:Oft. Spectrosk,35, 286 (1973);T. Fujiyama, M. Kakimoto andT. Suzuki:Bull. Chem. Soc. Jpn.,49, 606 (1976): concentration fluctuations as explanation for «additional» (excess) broadening at medium concentrations in solutions (but see discussion in (3a)W. Schmitz: work for the Dissertation in Natural Sciences, part I, Technische Universität Braunschweig (1979), especially p. 110–180, 371–443, 519–567 and appendices D and E (p. 614–643);G. Döge, R. Arndt, H. Buhl andG. Bettermann:Z. Naturforsch. Teil A,35, 468 (1980). The relevant quantity, of course, is not the «overall» co-ordination number in liquids, but the number of interactional sites relevant for the particular vibrational «probe», (which can be quite small), whose effects can be motionally scrambled/narrowed, too, and whose basis always lies in short-ranged interactions (see paragraphs2′5.3,2′5.4) and/or dispersions, dependent on (electronic) charge density, modulated by motion, related to polarizability and vibrational derivatives thereof. They usually cause corresponding band shifts and—in the extreme cases of their origin from very strong specific interactions—asymmetries in the band (see paragraph2′5.4, especially subsect.2′3, and (22)D. Scheibe: Dissertation, Technische Universität Braunschweig (1980)).G. Döge: personal communication.)Google Scholar
  22. (22).
    D. Scheibe: Dissertation, Technische Universität Braunschweig (1980).Google Scholar
  23. (23).
    S. Bratos:J. Chem. Phys.,63, 3499 (1975);J. de Bleijser: Dissertation, Leiden (1974). (See discussion in (3a)W. Schmitz: work for the Dissertation in Natural Sciences, part I, Technische Universität Braunschweig (1979), especially p. 110–180, 371–443, 519–567 and appendices D and E (p. 614–643), too.)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1981

Authors and Affiliations

  • W. Schmitz
    • 1
  1. 1.Institut für Physikalische Chemie der Technischen UniversitätBraunschweig

Personalised recommendations