Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 61, Issue 2, pp 297–305 | Cite as

Irreversibility, uncertainty, relativity and computer limitations

  • D. Mundici
Article

Summary

Any computerM is subject to such laws as irreversibility and uncertainty of time-energy and maximality of the speed of light. This imposes fundamental limitations on the performance ofM and, more generally, on the power of algorithmic methods for several important logic operations; this also has an impact on the problem of what is knowable in mathematics.

Необратимость, неопределенность, относительность и ограничения вычислений

Резюме

Любое вычислительное устройствоM подчиняется таким законам, как необратимость и неопределенность времени и знергии и максимальность скорости света. Эти законы налагают фундаментальные ограничения на вьшолнение вычисленийM и, более того, на возможности алгоритмических методов для некоторых важных логических операций.

Riassunto

Ogni computerM è sottoposto a leggi quali l’irreversibilità e l’incertezza del tempoenergia, nonchè la massimalità della velocità della luce. Tutto ciò impone delle limitazioni di carattere fondamentale sulle prestazioni diM e più in generale sulle possibilità dei metodi algoritmici di certe operazioni logiche connaturate col metodo matematico deduttivo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. M. Turing:Proc. London Math. Soc.,42, 230 (1936); erratum,43, 544 (1936).MathSciNetGoogle Scholar
  2. (2).
    A. Church:Am. J. Math.,58, 345 (1936).MathSciNetCrossRefGoogle Scholar
  3. (3).
    L. Landau andE. Lifchitz:Mécanique quantique, théorie non relativiste, second edition (Moscow, 1967).Google Scholar
  4. (4).
    L. Landau andE. Lifchitz:Physique statistique (Moscow, 1967).Google Scholar
  5. (5).
    A. Messiah:Quantum Mechanics, I (Amsterdam, 1965).Google Scholar
  6. (6).
    H. Friedman:Adv. Math.,16, 18 (1976).CrossRefGoogle Scholar
  7. (7).
    D. Mundici:Natural limitations of algorithmic procedures in logic, inAtti Accademia Nazionale dei Lincei, Roma, 1980, in publication.Google Scholar
  8. (8).
    D. Mundici:Complexity of Craig’s interpolation, J. Symb. Logic, in publication.Google Scholar
  9. (9).
    D. Mundici:Natural limitations of decision processes for arithmetic with bounded quantifiers, submitted for publication.Google Scholar
  10. (10).
    M. J. Fischer andM. O. Rabin:SIAM-AMS Proc.,7, 27 (1974).MathSciNetGoogle Scholar
  11. (11).
    R. Landauer andJ. W. F. Woo: inSynergetics, edited byH. Haken (Stuttgart, 1973), p. 97.Google Scholar
  12. (12).
    A. V. Aho, J. E. Hopcroft andJ. D. Ullman:The Design and Analysis of Computer Algorithms (Reading, Mass. 1974).Google Scholar
  13. (13).
    C. H. Bennet:IBM J. Res. Dev.,17, 525 (1973).CrossRefGoogle Scholar
  14. (14).
    D. Mundici:Compactness=JEP in any logic, Fundam. Math.,116 (1982) in publication.Google Scholar
  15. (15).
    D. Mundici:Robinson’s consistency theorem in soft model theory, Trans. Am. Math. Soc. (February issue, 1981), in publication.Google Scholar
  16. (16).
    D. Mundici:Ergodic undefinability in set theory and recursion theory, Proc. Am. Math. Soc. (April issue, 1981), in publication.Google Scholar

Copyright information

© Società Italiana di Fisica 1981

Authors and Affiliations

  • D. Mundici
    • 1
  1. 1.Consiglio Nazionale delle RicercheCNR-Loc. Romola No. 76DonniniFirenze

Personalised recommendations