Advertisement

Journal of Coatings Technology

, Volume 72, Issue 911, pp 73–84 | Cite as

New anti-corrosive painting technologies at the beginning of the 21st century

  • Elisabete Almeida
Open Forum Article

Abstract

The aim of this work is to provide a general overview of current trends in anti-corrosive painting technologies for steel and galvanized steel substrates. After some considerations of important aspects inherent to the environment and humans and to competitiveness and quality, a summary of new painting technologies is given, in particular solvent-free liquid paints, powder paints, water-based paints, and radiation-cured paints. As a complement to this, mention is made of specific aspects concerning galvanized steel and application technologies, such as cataphoresis and autophoresis. Finally, some references are presented concerning the short- and mid-term future of anti-corrosive painting technologies.

Keywords

Polyester Resin Galvanize Steel Paint System Melamine Resin Waterborne Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Bahlman, W. and Umlauft, D.,Corros. Prot. Materi., 4, 16–31 (Aug/Sept/Oct. 1982).Google Scholar
  2. (2).
    BS 5493, “Code of Practice for Protective Coatings of Iron and Steel Structures Against Corrosion,” British Standard Institute, London, 1997.Google Scholar
  3. (3).
    DIN 55928/5, “Korrosionsshurtz von Stahlbauten Durch Beschichtungen und Uberzuge. Bescichungstroffe und Schutz System, DIN, Berlin, 1991.Google Scholar
  4. (4).
    Muller, F.,Industrie Lackerbetrieb, 310 (Feb. 1990).Google Scholar
  5. (5).
    Nogueira, J.L. and Coelho, R.,Corros. Prot. Mater., 11, 4, 6 (1992).Google Scholar
  6. (6).
    Gindre, A.,Double Liaison, Chimie des Peintures, 427–428, 119 (1991).Google Scholar
  7. (7).
    Martina, A., “Automotive Industry: Paint Shop Emissions Reduction Programme,” CEPE, 1st International Congress of VOCs, Mar., Maastricht, 1991.Google Scholar
  8. (8).
    Pratt, E.,Surf. Coat. Int., 4, 132 (1994).Google Scholar
  9. (9).
    Lindeboom, J.,Prog. Org. Coat., 34, 147 (1998).CrossRefGoogle Scholar
  10. (10).
    Commission Decision (1999/10/CE), J.O.C.E., L5 (Jan. 1999).Google Scholar
  11. (11).
    Directive 1999/13/CE., J.O.C.E., L85, Mar. (1999).Google Scholar
  12. (12).
    Diamantino, T.C., Almedia, E., and Soares, M.V.M.,Corros. Prot. Mater., 18, 3, 4, 18 (1999).Google Scholar
  13. (13).
    Child, T.F.,Revue Surfaces, 280, 56 (Sept. 1998).Google Scholar
  14. (14).
    Shuckla, M.C., Singh, V., and Vasistla, A.K.,J. Oil & Colour Chemists’ Assoc., 10, 370 (1991).Google Scholar
  15. (15).
    Mayer, W.P., Resins and Polymers,J. Oil & Colour Chemists’ Assoc., 4, 159 (1990).Google Scholar
  16. (16).
    Schrantz, J., Chrysler Luxury Cars Get Project 19’ Coat,Ind. Finish, Ap. (1998).Google Scholar
  17. (17).
    North, A.G., inOrganic Coating: Science and Technology, Vol. 7, Parfit, G.D. and Patsis, A.V. (Eds.), Marcel Dekker, New York, 1984.Google Scholar
  18. (18).
    Shrantz, J.,Ind. Finish., 62, 4, 23 (1986).Google Scholar
  19. (19).
    Pilcher, G.R.,EuroCoat, 1–2, 59 (1993).Google Scholar
  20. (20).
    Hensaw, B.C. and Leary, B., “Thermosetting Coatings,” V.S. Patente 3, 857,817 (1974), to Dulux Australia, 1994, 851 (1976).Google Scholar
  21. (21).
    Shrantz, J.,Mod. Paint Coat., 74 (Sept. 1994).Google Scholar
  22. (22).
    Jones, F.N., “Toward Solventless Liquid Coatings,”Journal of Coatings Technology,68, No. 852, 25 (1996).Google Scholar
  23. (23).
    Bodnar, E.,EuroCoat., 1, 206 (1991).Google Scholar
  24. (24).
    Alhey, R.D.,EuroCoat., 1, 209 (1991).Google Scholar
  25. (25).
    Kossmann, H.,Polym. Paint Col. J., 17, 204 (1991).Google Scholar
  26. (26).
    Chapman, H.,Euro Coat, 9, 540 (1991).Google Scholar
  27. (27).
    Howarth, G.A. and Hayward, G.R., “Waterborne Resins,” OCCA Student Monograph No. 3, Oil and Colour Chemists’ Association, UK, 1996.Google Scholar
  28. (28).
    Nysteen, S.,Surf. Coat. Technol., 7, 311 (1994).Google Scholar
  29. (29).
    Neffagen, B.,Eur. Coat. J., 10, 700 (1996).Google Scholar
  30. (30).
    Weinmann, D.J., Dangayachand, K., and Smith, C., “Amine Functional Curatives for Low Temperature Cure Epoxy Coatings,”Journal of Coatings Technology,68, No. 863, 29 (1996).Google Scholar
  31. (31).
    Conwell, D.W.,Surf. Coat. Int., 11, 455 (1994).Google Scholar
  32. (32).
    Gardon, J.L.,Prog. Org. Coat., 11, 455 (1994).Google Scholar
  33. (33).
    Clarke, J.B., OCCA Student Monograph, No. 6, Oil and Colour Chemists’ Association, UK, 1994.Google Scholar
  34. (34).
    Hester, D.H. and Squire, D., “Rheology of Waterborne Coatings,”Journal of Coatings Technology,69, No. 864, 109 (1997).CrossRefGoogle Scholar
  35. (35).
    Jansse, P.L.,J. Oil & Colour Chemists’ Assoc., 12, 478 (1989).Google Scholar
  36. (36).
    Robinson, P.V., “New Directions—The Paint Research Institute Research Program for the 80s,”Journal of Coatings Technology,53, No. 672, 47 (1981).Google Scholar
  37. (37).
    Padget, J.C., “Polymers for Water-Based Coatings—A Systematic Overview,”Journal of Coatings Technology,66, No. 839, 89 (1994).Google Scholar
  38. (38).
    Reinhard, G.,Prog. Org. Coat., 18, 123 (1990).CrossRefGoogle Scholar
  39. (39).
    Reinhard, G.,Thesis B., Tech. Univ., Dresden, 1977.Google Scholar
  40. (40).
    Perrin, D.D.,Masking and Demasking of Chemical Reaction, Wiley-Interscience, New York, 1970.Google Scholar
  41. (41).
    Whitehouse, N.R.,Polym. Paint Colour J., 178, 239 (1988).Google Scholar
  42. (42).
    Kuehn, M.,Dstch Farben. 7, 25, 155 (1971).Google Scholar
  43. (43).
    Kam, T.T. and Hon, P.K., “Anticorrosive Effect of Some β-Diketones in Polymeric Coatings on Low Carbon Steel,”Journal of CqUtings Technology,55, No. 697, 39 (1983).Google Scholar
  44. (44).
    Naser, A.M., et al.,J. Oil & Colour Chemists’ Assoc., 63, 337 (1980).Google Scholar
  45. (45).
    Leidheiser, H., Jr. and Konno, H.,J. Electrochem. Soc., 130, 747 (1983).CrossRefGoogle Scholar
  46. (46).
    Blank, W.J., “Polyurethane Oligomers for Waterborne and High-Solids Coatings,”Journal of Coatings Technology,60, No. 764, 43 (1988).Google Scholar
  47. (47).
    Kuschnir, P., Eley, R.R., and Floyd, F.L., “Control of Foaming in Water-borne Coatings,”Journal of Coatings Technology, 59, No. 744, 75 (1987).Google Scholar
  48. (48).
    Eacott, C.P.,J. Oil & Colour Chemists’ Assoc., 9, 322 (1991).Google Scholar
  49. (49).
    Geel, C.,J. Oil & Colour Chemists’ Assoc., 2, 76 (1993).Google Scholar
  50. (50).
    Easton, T. and Stephens, D.,Surfaces, 254, 40, (Mai/Juin 1995).Google Scholar
  51. (51).
    Grolitzer, M.A. and Erickson, D.E., “Flow Modifiers: A Key to Developing High Quality Surface Coatings,”Journal of Coatings Technology,67, No. 845, 89 (1995).Google Scholar
  52. (52).
    Shay, G.D., Olesen, K.R., and Stallings, L., “Predicting the Water-Sensitivity of Film Forming Coatings Additives by Water Vapor Sorption: With Application to Thickeners and Rheology Modifiers,”Journal of Coatings Technology,68, No. 854, 51 (1996).Google Scholar
  53. (53).
    Athey, D.,Eur. Coat. J., 10, 720 (1996).ADSGoogle Scholar
  54. (54).
    Duecoffre, V., Diener, W., Flosbach, C., and Schubert, W.,Prog. Org. Coat., 34, 200 (1998).CrossRefGoogle Scholar
  55. (55).
    Creutz, S., Jerôme, R., Kaptjn, G.M.P., Van der Werf, A.W., and Akkerman, J.M., “Design of Polymeric Dispersants for Waterborne Coatings,”Journal of Coatings Technology,70, No. 883, 41 (1998).CrossRefGoogle Scholar
  56. (56).
    Reinhardt, R.A., Heilen, W., Walhorn, E., Silber, S., and Adams, J.W., “Defoamer Selection in Waterborne Coatings,”Journal of Coatings Technology,70, No. 855, 157 (1998).CrossRefGoogle Scholar
  57. (57).
    Bettner, A.,J. Oil & Colour Chemists’ Assoc., 4, 97 (1988).Google Scholar
  58. (58).
    Bettner, A.,J. Oil & Colour Chemists’ Assoc., 2, 54 (1993).Google Scholar
  59. (59).
    Montes, E., “Influence of Particle Size Distribution of Zinc Dust in Water-Based, Inorganic, Zinc-Rich Coatings,”Journal of Coatings Technology, 65, No. 821, 79 (1993).Google Scholar
  60. (60).
    Kobayashi, T., Terada, T., and Ikeda, S.,J. Oil & Colour Chemists’ Assoc., 6, 252 (1990).Google Scholar
  61. (61).
    Stoffer, J.O. and Fahim, M., “Ultrasonic Dispersion of Pigment in Water-Based Paints,”Journal of Coatings Technology, 63, No. 797, 61 (1991).Google Scholar
  62. (62).
    van den Abbeele, A.,Galvano, 392, 667 (Sept. 1969).Google Scholar
  63. (63).
    Pinturas y Acabados, 37–44 (1995).Google Scholar
  64. (64).
    Röslor, M.A., Klinke, E., and Kimz, G.,Prog. Org. Coat., 23, 351 (1994).CrossRefGoogle Scholar
  65. (65).
    Efsen, K.,Surf. Coat. Int., 6, 234 (1994).Google Scholar
  66. (66).
    Lauppi, U.V., Plastics and Rubber Processing and Applications, 5, 173 (1985).Google Scholar
  67. (67).
    Decker, C., “UV Curing of Acrylate Coatings by Laser Beams,”Journal of Coatings Technology,56, No. 713, 29 (1984).Google Scholar
  68. (68).
    Vaizey, J.A.,Polym. Paint Col. J., 4073, 394 (1982).Google Scholar
  69. (69).
    Knight, R.,Polym. Paint Col. J., 4081, 81 (1982).Google Scholar
  70. (70).
    Hoyle, C.E.,Am. Paint Coat. J., 68, 48, 42 (1984).Google Scholar
  71. (71).
    Noomen, A.,J. Oil & Colour Chemists’ Assoc., 9, 347 (1981).Google Scholar
  72. (72).
    Plessis, I.A. and Hollain, G.,J. Oil & Colour Chemists’ Assoc., 7, 239 (6ç79).Google Scholar
  73. (73).
    Vrancken, A.,J. Oil & Colour Chemists’ Assoc., 5, 118 (1984).Google Scholar
  74. (74).
    Pasternack, G.,J. Rad. Curing, 3, 12 (1982).Google Scholar
  75. (75).
    Garnet, J.L.,J. Oil & Colour Chemists’ Assoc., 10, 383 (1982).Google Scholar
  76. (76).
    Demarteau, W. and Loutz, J.M.,Double Liaison, Chemie des Peintures, 411 (Jan.–Feb. 1990).Google Scholar
  77. (77).
    Ooka, M. and Ozawa, H.,Prog. Org. Coat., 23, 325 (1994).CrossRefGoogle Scholar
  78. (78).
    Domingues, J.,Corros. Prot. Mater., 84/85, 4 (1976).Google Scholar
  79. (79).
    Almeida, E., “Corrosão Atmosférica. Mapas de Portugal,” Chap. 2, inCorrosão e Portecção nas Atmosferas da Ibero-America, Part 1, Cyted, Madrid, 39 (1998).Google Scholar
  80. (80).
    Toussain, A., Piens, M., and Padinha, E.,Corros. Prot. Mater., 1, 11 (Jan.–Feb. 1982).Google Scholar
  81. (81).
    Hinton, B.R.W.B.,Metal Finish., 55 (1991).Google Scholar
  82. (82).
    Rosenfeld, I.L., “Corrosion Inhibitors,” M. Khimia (1977).Google Scholar
  83. (83).
    Leroy, R.L.,Corrosion, 34, 4, 113 (1978).Google Scholar
  84. (84).
    Child, T.F.,Surfaces, 280, 56 (1998).Google Scholar
  85. (85).
    Bibber, J.W., US Patent 4895608, 23 (Jan. 1990).Google Scholar
  86. (86).
    Yamassoe, K., US Patent 4908075, 13 (Mar. 1990).Google Scholar
  87. (87).
    Shih, H. and Mansfeld, G., ASTM STP 1134, 180, American Society for Testing Materials, Philadelphia, 1992.Google Scholar
  88. (88).
    Das, N., US Patent 5139586, 18 (Aug. 1990).Google Scholar
  89. (89).
    Almedia, E., Diamantino, T.C., Figueiredo, M.O., and Sá, C.,Surf. Coat. Techn., 106, 8 (1998).CrossRefGoogle Scholar
  90. (90).
    Tison, R.P., Synder, D.D., and Wang, S.,J. Electrochem. Soc., 138, 5, 1275 (1991).CrossRefGoogle Scholar
  91. (91).
    Metschel, M.,Proc. Advanced Coating Technology Conference., USA, 3–5, 130 (Nov. 1992).Google Scholar
  92. (92).
    Heibaum, J.,Surtec, Berlin, 57 (1991).Google Scholar
  93. (93).
    Gehmecker, H., “Automotive Protection Practices in Europe,”Corros. Prev., SAC, SP-1265, 45 (1997).Google Scholar
  94. (94).
    Gehmecker, H., “Phosphating and Chrome-Free Passitivation of Multi-Metal Car Bodies.”Google Scholar
  95. (95).
    Cabral, A.M., Almedia, E., and Marzues, C.C.,Corros. Prot. Mater., 8, 1, 12 (1989).Google Scholar
  96. (96).
    Pfeiffer, B. and Schultze, J.W.,J. Apl. Elect., 21, 877 (1991).CrossRefGoogle Scholar
  97. (97).
    Gang, L., Warigen, S., Yaniong, C., and Shili, Z.,Met. Finish., 54 (Sept. 1997).Google Scholar
  98. (98).
    Zeh, H. and Baumgartl, H.,Surf. Coat. Int., 9, 132 (1995).Google Scholar
  99. (99).
    Nakayama, Y., “Decomposable Crosslinking Paint,”Journal of Coatings Technology, 70, No. 887, 63 (1998).CrossRefGoogle Scholar
  100. (100).
    Tanable, H. and Olisugi, H.,Prog. Org. Coat., 32, 197 (1997).CrossRefGoogle Scholar
  101. (101).
    Perksen, S.T.P., Vereijken, J.M., and Kolster, P., ATO-DLO, Wagenigen, Netherlands (1996).Google Scholar
  102. (102).
    Turri, S., Sciccitano., M., Simeone, G., and Tonelli, C.,Prog. Org. Coat., 32, 205 (1997).CrossRefGoogle Scholar
  103. (103).
    Schauer, T., Joos, A., Dulog, L., and Eisenbach, C.D.,Prog. Org. Coat., 33, 20 (1998).CrossRefGoogle Scholar
  104. (104).
    Maia, D.J., das Neves, S., Alves, O.L., and DePaoli, M.A.,Electrochimica Acta, 44, 1945 (1999).CrossRefGoogle Scholar
  105. (105).
    Barth, M., Lapkowski, M., and Lefrant, S.,Electrochimica Acta, 44, 2117 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media 2000

Authors and Affiliations

  • Elisabete Almeida
    • 1
  1. 1.INETI-Instituto Nacional de Engenharia e Tecnologia IndustrialPortugal

Personalised recommendations