Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 44, Issue 1, pp 222–228 | Cite as

Broken symmetries and nonleptonic hyperon decays

  • D. Tadić
  • R. Padjen
Article
  • 13 Downloads

Summary

SU6 symmetry +CP invariance (or its relativistic generalizations in the zero-momentum-transfer limit) give for the nonleptonic hyperon decays-wave amplitudes a result which is invariant underRP. If the symmetry is broken in such a way that the same invariance holds for thep-wave amplitudes, the resulting equalities\( - P\left( {\Xi _ - ^ - } \right) = P\left( {\Lambda _\_^0 } \right) = = \left( {1/\sqrt 3 } \right)P\left( {\sum _0^ + } \right) = \left( {1/\sqrt 6 } \right)\left[ {P\left( {\sum _ + ^ + } \right) - P\left( {\sum _ - ^ - } \right)} \right]\) seem to be in reasonably good agreement with the experimental results.

Keywords

Break Symmetry Decay Amplitude Nonrelativistic Version Nonleptonic Hyperon Nullo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Riassunto

La simmetriaSU6 più l’invarianzaCP (o le loro generalizzazioni relativistiche nel limite del momento trasferito nullo) danno per le ampiezze in ondas del decadimento iperonico non leptonico, risultato invariante rispetto aRP. Se la simmetria è infranta in modo tale che la stessa invarianza vale per le ampiezze in ondap, le uguaglianze risultanti\( - P\left( {\Xi _ - ^ - } \right) = P\left( {\Lambda _\_^0 } \right) = = \left( {1/\sqrt 3 } \right)P\left( {\sum _0^ + } \right) = \left( {1/\sqrt 6 } \right)\left[ {P\left( {\sum _ + ^ + } \right) - P\left( {\sum _ - ^ - } \right)} \right]\) sembrano essere in accordo ragionevolmente buono con i risultati sperimentali.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. Oehme:Phys. Lett.,15, 284 (1965);M. P. Khanna:Phys. Rev. Lett.,14, 711 (1965);R. Gatto, L. Maiani andG. Preparata: preprint;D. Horn, M. Kugler, H. J. Lipkin, S. Meshkov, J. C. Carter andJ. J. Coyne:Phys. Rev. Lett.,14, 717 (1965).ADSMathSciNetCrossRefGoogle Scholar
  2. (2).
    S. P. Rosen:Phys. Rev. Lett.,14, 758 (1965).ADSCrossRefGoogle Scholar
  3. (3).
    The expression for thep-wave amplitudes used byK. Kawarabayashi:Phys. Rev. Lett.,14, 86 (1965) is a nonrelativistic approximation of the 12. We explain his result in the Appendix.ADSMathSciNetCrossRefGoogle Scholar
  4. (4).
    B. W. Lee:Phys. Rev. Lett.,12, 83 (1964);S. Coleman, S. L. Glashow andB. W. Lee:Ann. of Phys.,30, 348 (1964).ADSCrossRefGoogle Scholar
  5. (5).
    W. Rühl:Phys. Lett.,14, 346 (1965);Nuovo Cimento,37, 319 (1965).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    G. Altarelli, F. Buccella andR. Gatto:Phys. Lett.,14, 70 (1965).ADSMathSciNetCrossRefGoogle Scholar
  7. (7).
    M. Gell-Mann:Phys. Rev. Lett.,12, 155 (1964).ADSMathSciNetCrossRefGoogle Scholar
  8. (8).
    S. L. Glashow andJ. J. Sakurai:Nuovo Cimento,25, 337 (1962);26, 622 (1962).CrossRefGoogle Scholar
  9. (9).
    A. Salam, R. Delbourgo andJ. Strathdee:Proc. Roy. Soc.,284, 146 (1965).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1966

Authors and Affiliations

  • D. Tadić
    • 1
  • R. Padjen
    • 1
  1. 1.Institute «Ruder Boŝković»Zagreb

Personalised recommendations