Advertisement

Bulletin of Materials Science

, Volume 23, Issue 4, pp 285–293 | Cite as

Dielectric properties of NaF-B2O3 glasses doped with certain transition metal ions

  • M. Krishna Murthy
  • K. S. N. Murthy
  • N. Veeraiah
Glasses

Abstract

Dielectric constant ε, loss tan δ, a.c. conductivity Σ and dielectric breakdown strength of NaF-B2O3 glasses doped with certain transition metal ions (viz. Cu2+, VO2+, Ti4+ and Mn4+) are studied in the frequency range 102-107 Hz and in the temperature range 30–250°C. The values of ε, tan δ, Σa.c. are found to be the highest for Cu2+ doped glasses and the lowest for Mn4+ doped glasses. Activation energy for a.c. conduction and the value of dielectric breakdown strength are found to be the lowest for Cu2+ doped glasses and the highest for Mn4+ doped glasses. With the help of infrared spectra, increase in the values of ε and tan δ of these glasses with frequency and temperature are identified with space charge polarization. An attempt has been made to explain a.c. conduction phenomenon on the basis of quantum mechanical tunneling model (QMT)/carrier barrier hopping model.

Keywords

Dielectric properties NaF-B2O3 glasses QMT model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed A A and Abd-Elshafi N 1998Indian J. Pure & Appl. Phys. 36 335Google Scholar
  2. Austin I G and Mott N F 1969Adv. Phys. 18 657CrossRefGoogle Scholar
  3. Butcher P and Hyden K J 1977Philos. Mag. 36 657CrossRefGoogle Scholar
  4. Elliot S R 1987Adv. Phys. 36 135CrossRefGoogle Scholar
  5. Ghosh A and Chauduri R K 1996J. Non-Cryst. Solids 83 151CrossRefGoogle Scholar
  6. Khalifa F A and Elhadi A A 1996Indian J. Pure & Appl. Phys. 34 201Google Scholar
  7. Kumar A V R and Veeraiah N 1999J. Mater. Sci. Lett. 18 475CrossRefGoogle Scholar
  8. Mallawany R El 1994Mat er. Chem. Phys. 37 157Google Scholar
  9. Nageswara Rao K and Veeraiah N 2000Indian J. Phys. A B74 37Google Scholar
  10. Pollak M 1971Philos. Mag. 23 519CrossRefGoogle Scholar
  11. Ramana M V and Sastry G S 1989Phys. Status Solidi B116 K206Google Scholar
  12. Ravi Kumar V and Veeraiah N 1995Phys. Status Solidi A47 601Google Scholar
  13. Ravi Kumar V and Veeraiah N 1998J. Phys. Chem. Solids 59 91CrossRefGoogle Scholar
  14. Ravi Kumar V, Veeraiah N and Buddudu S 1997J. Phys. III 70 951CrossRefGoogle Scholar
  15. Sagar K D, Kistaiah P, Rao B A, Murthy K S N and Veeraiah N 1998Indian J. Pure & Appl. Phys. 36 467Google Scholar
  16. Sagar K D, Kistaiah P, Rao B A, Murthy K S N and Veeraiah N 1999J. Mater. Sci. Lett. 18 55CrossRefGoogle Scholar
  17. Sridhar B, Indira B and Bhatnagar A K 1995Indian J. Pure & Appl. Phys. 33 253Google Scholar
  18. Tanaka K 1985Solid State Commun. 54 867CrossRefGoogle Scholar
  19. Tareev B 1979Physics of dielectric materials (Moscow: MIR Publishers)Google Scholar

Copyright information

© Indian Academy of Sciences 2000

Authors and Affiliations

  • M. Krishna Murthy
    • 1
  • K. S. N. Murthy
    • 1
  • N. Veeraiah
    • 1
    • 2
  1. 1.Department of Physics, O.U. College of ScienceOsmania UniversityHyderabadIndia
  2. 2.Department of PhysicsNagarjuna University P.G. CentreNuzvidIndia

Personalised recommendations