Korean Journal of Chemical Engineering

, Volume 21, Issue 6, pp 1224–1230 | Cite as

Rapid synthesis of mesoporous silica by an accelerated microwave radiation method

  • Myung-Geun Song
  • Jong-Yun Kim
  • Sung-Ho Cho
  • Jong-Duk Kim


Microwave-hydrothermal processes for the synthesis of mesoporous silica were investigated with different pathways and mixture conditions at 373 K, and the corresponding structures to the hydrothermal method were synthesized within a very short crystallization time. 2-D hexagonally ordered arrays of MCM-41 materials via the direct electrostatic assembly pathway of ST and mediated templating pathways of S+X-I+ with CTAB were synthesized, and cubic mesophase of MCM-48 was also prepared within 2 hrs of microwave heating without adding alcohol. Nonionic surfactants with ethylene oxide (EO) moiety as structure-directing agents were used for the preparation of ordered array of hexagonal or cubic mesostructured silica via the charge matching principle of (S0H+)(X-I+). Although the detailed roles of microwaves may differ for each process, microwaves accelerate the formation of multiply charged silicate oligomers, initiating mesophase assembly. Therefore, the use of microwave radiation can transfer energy uniformly and quickly, and complete the syntheses of mesostructured materials within a short time

Key words

Mesoporous Silica Microwave Radiation Nonionic Surfactant Dielectric Heating Rapid Synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagshow, S. A., Prouzet, E. and Pinnavaia, T. J., “Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants”,Science, 269, 1242 (1995).CrossRefGoogle Scholar
  2. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. T., Chu, C. T., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L., “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates,”J. Am. Chem. Soc., 114, 10834 (1992).CrossRefGoogle Scholar
  3. Belhekar, A., Agashe, M., Soni, H., Sathaye, S., Jacob, N. and Thundimadathil, J. B., “Synthesis and Characterization of Titanium-containing Mesoporous Silica by a Non-hydrothermal Microwave Method”,Chem. Soc. Jpn.,73, 2605 (2000).CrossRefGoogle Scholar
  4. Blin, J. L. and Su, B. L., “Well-ordered Spherical Mesoporous Materials CMI-1Synthesized via an Assembly of Decaoxylene Cetyl Ether and TMOS”,Chem. Mater.,13, 3542 (2001).CrossRefGoogle Scholar
  5. Brunauer, S., Deming, L. S., Deming, W. S. and Teller, E., “On a Theory of van der Waals Adsorption of Gases”J. Am. Chem. Soc.,62, 1723 (1940).CrossRefGoogle Scholar
  6. Chung, J. S., Kim, D. J., Ahn, W. S., Ko, J. H. and Cheong, W. J., “Synthesis, Characterization, and Applications of Organic-Inorganic Hybrid Mesoporous Silica,”Korean J. Chem. Eng., 21, 132 (2004).CrossRefGoogle Scholar
  7. Edler, K. J. and White, J. W., “Further Improvements in the Long Range Order of MCM-41 Materials”,J. Chem. Soc., Chem. Commun., 155 (1995).Google Scholar
  8. Firouzi, A., Kumar, D., Bull, L. M., Besier, T., Sieger, P., Huo, Q., Walker, S. A., Zasadzinski, J. A., Glinka, C., Nicol, J., Margolese, D., Stucky, G. D. and Chmelka, B. F., “Cooperative Organization of Inorganic Surfactant and Biomimetic Composite Structures,”Science,267, 1138(1995).CrossRefGoogle Scholar
  9. Fyfe, C. A. and Fu, G., “Structure Organization of Silicates Polyanions with Surfactants: A New Approach to the Syntheses, Structure Transformations, and Formation Mechanisms of Mesostructural Materials,”J. Am. Chem. Soc.,117, 9709 (1995).CrossRefGoogle Scholar
  10. Gabriel, C., Gabriel, S., Grant, E. H., Halstead, B. S. K. and Mingos, D. M. P., “Dielectric Parameters Relevant to Microwave Dielectric Heating”,Chem. Soc. Rev.,27, 213 (1997).CrossRefGoogle Scholar
  11. Göltner, C. G., Berton, B., KrÄmer, E. and Antonietti, M., “Nanoporous Silicas by Casting the Aggregates of Amphiphilic Block Copolymers: The Transition from Cylinders to Lamellae and Vesicles,”Adv. Mater.,11, 395 (1999).CrossRefGoogle Scholar
  12. Huo, Q., Margolese, D. I., Ciesla, U., Demuth, D. G., Feng, P., Gier, T. E., Sieger, P., Firouzi, A., Chmelka, B. F., Schüth, F. and Stucky, G. D., “Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays”,Chem. Mater.,6, 1176 (1994).CrossRefGoogle Scholar
  13. Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schüth, F. and Stucky, G. D., “Generalized Synthesis of Periodic Surfactant/inorganic Composite Materials,”Nature, 368, 317 (1994).CrossRefGoogle Scholar
  14. Huo, Q., Margolese, D. I. and Stucky, G. D., “Surfactant Control of Phases in the Synthesis of Mesoporous Silica-based Materials,”Chem. Mater., 8, 1147 (1996).CrossRefGoogle Scholar
  15. Kaneda, M., Tsubakiyama, T., Carlsson, A., Sakamoto, Y., Ohsuna, T., Terasaki, O., Joo, S. H. and Ryoo, R., “Structural Study of Mesoporous MCM-48 and Carbon Networks Synthesized in the Spaces of MCM-48 by Electron Crystallography,”J. Phys. Chem. B, 106, 1256 (2002).CrossRefGoogle Scholar
  16. Jansen, J. C., Arafat, A., Barakat, A. K., van Bekkum, H., Occelli, M. L. and Robson, H. E., In “Synthesis of Microporous Materials,” Van Nostrand Reinhold, New York, Vol. 2, 507 (1992).Google Scholar
  17. Kim, J. M., Kim, S. K. and Ryoo, R., “Synthesis of MCM 48 Single Crystals”,Chem. Commun., 259 (1998).Google Scholar
  18. Kim, G. J., Park, D. W. and Ha, J. M., “Synthesis of a Siliceous MCM 41 using C22TMACl Template and Preparation of Heterogenized New Chiral Salen Complexes,”Korean J. Chem. Eng.,17, 337 (2000).CrossRefGoogle Scholar
  19. Kresge, C.T., Leonowicz, M. E., Roth, W J., Vartuli, J. C. and Beck, J. S., “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid Crystal Template Mechanism,”Nature,59, 710 (1992).CrossRefGoogle Scholar
  20. Mingos, D. M. P., “Microwave Synthesis of Inorganic Materials,”Adv. Mater.,11, 857 (1993).CrossRefGoogle Scholar
  21. Mingos, D. M. P., “The Applications of Microwaves in Chemical Syntheses,”Microwave Induced React., 85 (1994).Google Scholar
  22. Mingos, D. M. P. and Baghurst, D. R., “Design and Application of a Reflux Modification for the Synthesis of Organometallic Compounds using Microwave Dielectric Loss Heating Effects,”J. Organomet. Chem., 384, 57(1990).CrossRefGoogle Scholar
  23. Newalkar, B. L. and Kormarneni, S., “Control over Microporosity Ordered Microporous-microporous Silica SBA-15 Framework Under Microwave-hydrothermal Conditions: Effect of Salt Addition,”Chem. Mater., 13, 4573 (2001).CrossRefGoogle Scholar
  24. Newalkar, B. L., Komarneni, S. and Katsuki, H., “Rapid Synthesis of Mesoporous SBA-15 Molecular Sieve by a Microwave-hydrothermal Process”,Chem. Comm.,23, 2389 (2000).CrossRefGoogle Scholar
  25. Newalkar, B. L., Olanrewaju, J. and Komarneni, S., “Microwave-hydrothermal Synthesis and Characterization of Zirconium-substituted SBA-15 Mesoporous Silica,”J. Phys. Chem. B, 105, 8356 (2001a).CrossRefGoogle Scholar
  26. Newalkar, B. L., Olanrewaju, J. and Komarneni, S., “Direct Synthesis of Titanium-substituted Mesoporous SBA15 Molecular Sieve under Microwave Hydrothermal Conditions”,Chem. Mater.,13, 552 (2001b).CrossRefGoogle Scholar
  27. Park, S. E., Kim, D. S., Chang, J. S. and Kim, W.Y., “Synthesis of MCM-41 using Microwave Heating with Ethylene Glycol”,Catalysis Today,44, 301 (1998a).CrossRefGoogle Scholar
  28. Park, S. E., Kim, D. S., Chang, J. S. and Kim, W.Y., “Photoluminescence Spectroscopic Monitoring in the Synthesis of Mesoporous Materials by Microwave-induced Heating,”Stud. Surf. Set Catal, 117, 265 (1998b).Google Scholar
  29. Rao, K. J., Vaidhyanathan, B., Ganguli, M. and Ramakrishnan P. A., “Synthesis of Inorganic Solids using Microwaves,”Chem. Mater.,11, 882 (1999).CrossRefGoogle Scholar
  30. Roh, H. S., Chang, J. S. and Park, S. E., “Synthesis of Mesoporous Silica in Acidic Condition by Solvent Evaporation Method”,Korean J. Chem. Eng.,16, 331 (1999).CrossRefGoogle Scholar
  31. Ryoo, R. and Kim, J. M., “Structural Order in MCM-41Controlled by Shifting Silicate Polymerization Equilibrium,”J. Chem. Soc., Chem. Commun.,7, 711 (1995).CrossRefGoogle Scholar
  32. Ryoo, R., Kim, J. M., Ko, C. H. and Shin, C. H., “Disordered Molecular Sieve with Branched Mesoporous Channel Network,”J. Phys. Chem., 100, 17718 (1996).CrossRefGoogle Scholar
  33. Sayari, A., “Novel Synthesis of High Quality MCM-48 Silica”,J. Am. Chem. Soc.,122, 6504 (2000).CrossRefGoogle Scholar
  34. Schumacher, K., Grun, M. and Unger, K. K., “Novel Pathways for the Preparation of Mesoporous MCM-41 Materials: Control of Porosity and Morphology”,Microporous Mesoporous Mater.,27, 201 (1999).CrossRefGoogle Scholar
  35. Setoguchi, Y. M., Teraoka, Y., Moriguchi, I., Kagawa, S., Tomonaga, N., Yasutake, A. and Izumi, J., “Rapid Room Temperature Synthesis of Hexagonal Mesoporous Silica using Inorganic Silicate Sources and Cationic Surfactants under Highly Acidic Conditions,”J. Porous Mat., 4, 129 (1997).CrossRefGoogle Scholar
  36. Song, M. G., Kim, J. Y., Cho, S. H. and Kim, J. D., “Mixed Cationicnonionic Surfactant Templating Approach for the Synthesis of Mesoporous Silica,”Langmuir,18, 6110 (2002).CrossRefGoogle Scholar
  37. Tanev, P. T. and Pinnavaia, T. J., “A Neutral Templating Route to Mesoporous Molecular Sieves,”Science,267, 865 (1995).CrossRefGoogle Scholar
  38. Tian, B., Liu, X., Yang, H., Xie, S., Yu, C., Tu, B. and Zhao, D., “General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave-digested Mesoporous Silica”,Adv. Mater.,15, 1370 (2003).CrossRefGoogle Scholar
  39. Xu, J., Luan, Z., He, H., Zhou, W. and Keven, L., “A Reliable Synthesis of Cubic Mesoporous MCM-48 Molecular Sieve,”Chem. Mater.,10, 3690 (1998).CrossRefGoogle Scholar
  40. Zhang, Y. J., Zhao, S. L., Lu, L. Q. and Sun, G. D., “Study on Microwave Synthesis of Mesoporous Molecular Sieve Mo-MCM-48,”ACTA Chim. Sinica,59, 820 (2001).Google Scholar
  41. Zhao, D. and Goldfarb, D., “Synthesis of Mesoporous Manganosilicates: Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L,”J. Chem Soc.,Chem. Commun., 875 (1995).Google Scholar
  42. Zhao, D., Huo, Q., Feng, J., Chmelka, B. E. and Stucky, G. D., “Nonionic Triblock and Star Diblock Coplymer and Oligomeric Surfactant Synthesis of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures,”J. Am. Chem. Soc.,120, 6024 (1998).CrossRefGoogle Scholar
  43. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B. F. and Stucky, G. D., “Continuous Mesoporous Silica Films with Highly Ordered Pore Structure”,Adv. Mater., 10, 1380 (1998).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2004

Authors and Affiliations

  • Myung-Geun Song
    • 1
  • Jong-Yun Kim
    • 2
  • Sung-Ho Cho
    • 1
  • Jong-Duk Kim
    • 1
  1. 1.Department of Chemical and Biomolecular Engineering, and Center for Energy and Environment EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.LG Household & Health Care Research ParkDaejeonKorea

Personalised recommendations