Advertisement

Korean Journal of Chemical Engineering

, Volume 22, Issue 3, pp 452–456 | Cite as

Prediction of the infinite-dilution partial molar volumes of organic solutes in supercritical carbon dioxide using the Kirkwood-Buff fluctuation integral with the hard sphere expansion (HSE) theory

  • Yong Jung Kwon
  • Won Gyu Lee
Article
  • 139 Downloads

Abstract

Two thermodynamic models were used to predict the infinite dilution partial molar volumes (PMVs) of organic solutes in supercritical carbon dioxide: (1) the Kirkwood Buff fluctuation integral with the hard sphere expansion (HSE) theory incorporated (KB-HSE fluctuation integral method) and (2) the Peng-Robinson equation of state with the classical mixing rule. While an equation of state only for pure supercritical carbon dioxide is needed in the KB-HSE fluctuation integral model, and thus, there is no need to know the critical properties of solutes, two molecular parameters (one size parameter σ12 and one dimensionless parameter α12) in the KB-HSE fluctuation integral model are determined to fit the experimental data published on the infinite dilution PMVs of solutes. The KB-HSE fluctuation integral method produced better results on the infinite dilution PMVs of eight organic solutes tested in this work than the Peng-Robinson equation of state with the classical mixing rule.

Key words

Partial Molar Volumes Supercritical Fluid Hard Sphere Expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, M. S. H. and Gasem, K. A., “Prediction of Phase Behavior, Henry’s Constants, and Infinite Partial Molar Volumes for Carbon Dioxide and Carbon Monoxide in n-Paraffins,”J. Supercritical Fluids,9, 244 (1996).CrossRefGoogle Scholar
  2. Bartle, K. D., Clifford, A. A. and Shilstone, G. F., “Estimation of Solubilities in Supercritical Carbon Dioxide: A Correlation for the Peng-Robinson Interaction Parameters,”J. Supercritical Fluids,5, 220 (1992).CrossRefGoogle Scholar
  3. Bharath, R., Inomata, H. and Arai, K., “Vapor-Liquid Equilibria for Binary Mixtures of Carbon Dioxide and Fatty Acid Ethyl Esters,”Fluid Phase Equilibria,50, 315 (1989).CrossRefGoogle Scholar
  4. Brennecke, J. F. and Eckert, C. A., “Phase Equilibria for Supercritical Fluid Process Design,”AIChE J.,35, 1409 (1989).CrossRefGoogle Scholar
  5. Ben-Naim, A., “Inversion of the Kirkwood-Buff Theory of Solutions: Application to the Water-Ethanol System,”J. Chem. Phys.,67, 4884 (1977).CrossRefGoogle Scholar
  6. Carnahan, N. F. and Starling, K. E., “Equations of State for Non-attracting Rigid Spheres,”J. Chem. Phys.,51, 635 (1969).CrossRefGoogle Scholar
  7. Chialvo, A.A., “Solute-Solute and Solute-Solvent Correlations in Dilute Near-Critical Ternary Mixtures: Mixed Solutes and Entrainer Effects,”J. Phys. Chem.,97, 2740 (1993).CrossRefGoogle Scholar
  8. Cochran, H. D., Lee, L. L. and Pfund, D. M., “Application of the Kirkwood-Buff Theory of Solutions to Dilute Supercritical Mixtures,”Fluid Phase Equilibria,34, 219 (1987).CrossRefGoogle Scholar
  9. Coutsikos, Ph., Magoulas, K., Tassios, D., Cortesi, A. and Kikic, I., “Correlation and Prediction of Infinite-dilution Partial Molar Volumes of Organic Solutes in SC Carbon Dioxide using the Peng-Robinson Equation and PHCT Equation of State and the LCVM EOS/GE Model,”J. Supercritical Fluids,11, 21 (1997).CrossRefGoogle Scholar
  10. Debenedetti, P.G., “Clustering in Dilute, Binary Supercritical Mixtures: A Fluctuation Analysis,”Chem. Eng. Sci.,42, 2203 (1987).CrossRefGoogle Scholar
  11. Foster, N. R., Macnaughton, S. J., Chaplin, R. P. and Wells, P. T., “Critical Locus and Partial Molar Volumes in Supercritical Fluids,”Ind. Eng. Chem. Res.,28, 2903 (1989).CrossRefGoogle Scholar
  12. Jeon, Y. P., Roth, M. and Kwon, Y. J., “Infinite Dilution Partial Molar Volume of Azulene and Acenaphthylene in Supercritical Carbon Dioxide,”J. Phys. Chem. B,103, 8132 (1999).CrossRefGoogle Scholar
  13. Jeon, Y. P., Roth, M. and Kwon, Y. J., “Infinite Dilution Partial Molar Volume of Naphthalene and Biphenyl in Carbon Dioxide from Supercritical Fluid Chromatography: Composition Effects in the Stationary Phase,”J. Phys. Chem. A,104, 5396 (2000).CrossRefGoogle Scholar
  14. Kim, H., Lin, H. M. and Chao, K. C., “Cubic Chain-of-Rotators Equation of State,”Ind. Eng. Chem. Fundamentals,25, 75 (1986).CrossRefGoogle Scholar
  15. Kirkwood, J.G. and Buff, F. P., “The Statistical Mechanical Theory of Solutions,”J. Chem. Phys.,19, 774 (1951).CrossRefGoogle Scholar
  16. Kwon, Y. J., Lee, J.Y. and Kim, K. C., “Application of the Kirkwood-Buff Solution Formalism and the Hard Sphere Expansion Method with the Modified Mean Density Approximation to Predict Solubility of Solutes in Supercritical Fluids,”Korean J. Chem. Eng.,14, 184 (1997).CrossRefGoogle Scholar
  17. Kwon, Y. J. and Mansoori, G. A., “Solubility Modeling of Solids in Supercritical Fluids Using the Kirkwood-Buff Fluctuation Integral with the HSE Theory,”J. Supercritical Fluids,6, 173 (1993).CrossRefGoogle Scholar
  18. Levelt Sengers, J.M. H., “Thermodynamic Behavior of Fluids in the Supercritical Region,”J. Supercritical Fluids,4, 215 (1991).CrossRefGoogle Scholar
  19. Liong, K. K., Foster, N.R. and Yun, S. L. J., “Partial Molar Volumes of DHA and EPA Esters in Supercritical Fluids,”Ind. Eng. Chem. Res.,30, 569 (1991).CrossRefGoogle Scholar
  20. Liu, H. and Macedo, E., “A Study on the Models for Infinite Dilution Partial Molar Volumes of Solutes in Supercritical Fluids,”Ind. Eng. Chem. Res.,34, 2029 (1995).CrossRefGoogle Scholar
  21. Mansoori, G. A. and Leland, T.W., “Statistical Thermodynamics of Mixtures,”J. Chem. Soc. Faraday, Trans.,68, 320 (1972).CrossRefGoogle Scholar
  22. O’Connell, J. P., “Thermodynamic Properties of Solutions and the Theory of Fluctuations,”Fluid Phase Equilibria,6, 21 (1981).CrossRefGoogle Scholar
  23. Peng, D.-Y. and Robinson, D. B., “A New Two Constant Equation of State,”Ind. Eng. Chem. Fundam.,15, 59 (1976).CrossRefGoogle Scholar
  24. Prausnitz, J. M., Lichenthaler, N.R. and Azevedo, E.G., Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ (1986).Google Scholar
  25. Reid, R. C., Prausnitz, J.M. and Poling, B. E.,The Properties of Gases and Liquids, 4th ed., McGraw-Hill Book Co., New York (1987).Google Scholar
  26. Schmitt, W. J. and Reid, R.C., “Solubility of Monofunctional Organic Solutes in Chemically Dispersed Supercritical Fluids,”J. Chem. Eng. Data,31, 204 (1986).CrossRefGoogle Scholar
  27. Shin, G. S., Park, J. S. and Kwon, Y. J., “An Improved Conformal Solution Method Based on Hard Sphere Expansion to Predict Vapor-Liquid Equilibria,”Korean J. Chem. Eng.,15, 603 (1998).CrossRefGoogle Scholar
  28. Shim, J.-J. and Johnston, K. P., “Phase Equilibria, Partial Molar Enthalpies, and Partial Molar Volumes Determined by Supercritical Fluid Chromatography,”J. Phys. Chem.,95, 353 (1991).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineering 2005

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKangwon National UniversityKangwon-doRepublic of Korea

Personalised recommendations