Journal of Biosciences

, Volume 6, Issue 6, pp 795–809 | Cite as

Molecular organization of great millet (Sorghum vulgare) DNA

  • Lakshmi Sivaraman
  • Vidya S. Gupta
  • P. K. Ranjekar


Approximately 52% of the nuclear genome of great millet(Sorghum vulgare) consists of repetitive DNA which can be grouped into very fast, fast and slow components. The reiteration frequencies of the fast and slow reassociating components are {dy7000} and 92 respectively. Approximately 90% of the genome consists of repeated sequences interspersed amongst themselves and with single copy sequences. The interspersed repeat sequences are of three sizesviz. > 1·5 kilobase pairs, 0·5–1·0 kilobase pairs and 0·15–0·30 kilobase pairs while the size of the single copy sequences is 3·0 kilobase pairs. Hence the genome organization of great millet is essentially of a mixed type


Great millet genome nuclear DNA content DNA sequence organization 

Abbreviations used




piperazine-N-N′-bis (2-ethanol sulphonic acid)


Tris (hydroxy methyl amino methane)


Kilobase pairs


melting temperature


nucleotide pairs






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bendich, A. J. (1979) inMolecular Biology of Plants, (ed. L.Rubenstein) (New York: Academic Press) p. 1.Google Scholar
  2. Bendich, A. J. and Anderson, R. S. (1977)Biochemistry,16, 4655.PubMedCrossRefGoogle Scholar
  3. Bonner, T. I., Brenner, D. J., Neufeld, B. R. and Britten, R. J. (1973)J. Mol. Biol.,81,123.PubMedCrossRefGoogle Scholar
  4. Braun, B. A., Schanke, K. E. and Graham, D. E. (1978)Nucleic Acids Res.,5,4283.PubMedCrossRefGoogle Scholar
  5. Britten, R. J., Graham, D. E. and Neufeld, B. R. (1974)Methods Enzymol.,29E, 363.CrossRefGoogle Scholar
  6. Flavell, R. B. and Smith, D. B. (1976)Heredity,37,231.Google Scholar
  7. Graham, D. E., Neufeld, B. R., Davidson, E. M. and Britten, R. J. (1974)Cell,1,127.CrossRefGoogle Scholar
  8. Gupta, V. S., Gadre, S. R. and Ranjekar, P. K. (1981)Biochim. Biophys. Acta,656,147.Google Scholar
  9. Gupta, V. S. and Ranjekar, P. K. (1981)J. Biosci.,3,417.CrossRefGoogle Scholar
  10. Gupta, V. S. and Ranjekar, P. K. (1982)Indian J. Biochem. Biophys.,19, 167.PubMedGoogle Scholar
  11. Hake, S. and Walbot, V. (1980)Chromosoma,79, 251.CrossRefGoogle Scholar
  12. Joshi, C. P. (1982)Cytological and Molecular Biological Studies in Plant Genomes, Ph. D. Thesis, University of Poona, Poona.Google Scholar
  13. Mahler, H. R. and Dutton, G. (1964)J. Mol. Biol.,10,157.PubMedCrossRefGoogle Scholar
  14. Preisler, R. S. and Thompson, W. F. (1981)J. Mol. Evol.,17,78.PubMedCrossRefGoogle Scholar
  15. Ranjekar, P. K., Pallota, D. and Lafontaine, J. G. (1976)Biochim. Biophys. Acta,425,30.PubMedGoogle Scholar
  16. Seshadri, M. and Ranjekar, P. K. (1980)Biochim. Biophys. Acta,610, 211.PubMedGoogle Scholar
  17. Smith, D. B. and Flavell, R. B. (1977)Biochim. Biophys. Acta,474, 82.PubMedGoogle Scholar
  18. Ullman, J. S. and McCarthy, B. J. (1973)Biochim. Biophys. Acta,294, 405.PubMedGoogle Scholar
  19. Wimpee, C. F. and Rawson, J. R. Y. (1979)Biochim. Biophys. Acta. 562, 192.PubMedGoogle Scholar
  20. Zimmerman, J. L. and Goldberg, R. B. (1977)Chromosoma,59, 227.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • Lakshmi Sivaraman
    • 1
  • Vidya S. Gupta
    • 1
  • P. K. Ranjekar
    • 1
  1. 1.Biochemistry DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations