Skip to main content
Log in

Advances in lunar science from the Clementine mission: A decadal perspective

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Clementine spacecraft orbited the Moon and acquired science data for 10 weeks in the Spring of 1994. During this time it collected global 11-band multispectral images and near global altimetry. Select areas of the Moon were imaged at 25 m/pixel in visible light and 60 m/pixel in thermal wavelengths. From these datasets a new paradigm for the evolution of the lunar crust emerged. The Moon is no longer viewed as a two-terrane planet, the Apollo samples were found not to represent the lunar crust as a whole, and the complexity of lunar crustal stratigraphy was further revealed. More than ten years later the Clementine datasets continue to significantly advance lunar science and will continue to do so as new measurements are returned from planned missions such as Chandrayaan, SELENE, and Lunar Reconnaissance Orbiter. This paper highlights the scientific research conducted over the last decade using Clementine data and summarizes the influence of Clementine on our understanding of the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arkani-Hamed J 1998 The lunar mascons revisited;J. Geo- phys. Res. 103(E2) 3709–3739.

    Article  Google Scholar 

  • Arkani-Hamed J, Konopliv A S and Sjogren W L 1999 On the equipotential surface hypothesis of lunar maria floors;J. Geophys. Res. 104(E3) 5921–5931.

    Article  Google Scholar 

  • Baker D N 1997 Clementine particle measurements in lunar orbit;Adv. Space Res. 19(10) 1587–1591.

    Article  Google Scholar 

  • Beatty J K 2003 Lunar flash doesn’t pan out;Sky and Tele- scope, June 24.

  • Blewett D T, Lucey P G, Hawke B R and Jolliff B L 1997a Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques;J. Geo- phys. Res. 102(E7) 16,319–16,325.

    Google Scholar 

  • Blewett D T, Lucey P G, Hawke B R, Ling G G and Robinson M S 1997b A comparison of Mercurian reflectance and spectral quantities with those of the Moon;Icarus 129(1) 217–231.

    Article  Google Scholar 

  • Blewett D T and Hawke B R 2001 Remote sensing and geological studies of the Hadley-Apennine region of the Moon;Meteorit. Planet. Sci. 36(5) 701–730.

    Google Scholar 

  • Blewett D T, Hawke B R and Lucey P G 2002 Lunar pure anorthosite as a spectral analog for Mercury;Meteorit. Planet. Sci. 37(9) 1245–1254.

    Google Scholar 

  • Blewett D T, Hawke B R and Lucey P G 2005 Lunar optical maturity investigations: A possible recent impact crater and a magnetic anamoly;J. Geophys. Res. 110 E04015, doi:10.1029/4002JE002380.

    Google Scholar 

  • Budney C J and Lucey P G 1998 Basalt thickness in Mare Humorum: The crater excavation method;J. Geophys. Res. 103(E7) 16,855–16,870.

    Article  Google Scholar 

  • Buratti B J, Hiller J K and Wang M 1996 The lunar oppo- sition surge: Observations by Clementine;Icarus 124(2) 490–499.

    Article  Google Scholar 

  • Buratti B J, McConnochie T H, Calkins S B, Hillier J K and Herkenhoff K E 2000 Lunar transient phenomena: What do the Clementine images reveal?;Icarus 146(1) 98–117.

    Article  Google Scholar 

  • Buratti B J and Johnson L L 2003 Identification of the lunar flash of 1953 with a fresh crater on the Moon’s surface;Icarus 161(1) 192–197.

    Article  Google Scholar 

  • Bussey D B J and Spudis P D 1997 Compositional analy- sis of the Orientale basin using full resolution Clemen- tine data: Some preliminary results;Geophys. Res. Lett. 24(4) 445–448.

    Article  Google Scholar 

  • Bussey D B J, Spudis P D and Robinson M S 1999 Illumi- nation conditions at the lunar south pole;Geophys. Res. Lett. 26(9) 1187–1190.

    Article  Google Scholar 

  • Bussey D B J and Spudis P D 2000 Compositional studies of the Orientale, Humorum, Nectaris, and Crisium lunar basins;J. Geophys. Res. 105(E2) 4235–4243.

    Article  Google Scholar 

  • Bussey D B J, Lucey P G, Steutel D, Robinson M S, Spudis P D and Edwards K D 2003 Permanent shadow in simple craters near the lunar poles;Geophys. Res. Lett. 30(6) 1278, doi:10.1029/2002GL016180.

    Article  Google Scholar 

  • Bussey D B J, Fristad K E, Schenk P M, Robinson M S and Spudis P D 2005 Constant illumination at the lunar north pole;Nature 434(7035) 842–842.

    Article  Google Scholar 

  • Campbell B A, Hawke B R and Thompson T W 1997 Regolith composition and structure in the lunar maria: Results of long-wavelength radar studies;J. Geophys. Res. 102(E8) 19,307–19,320.

    Article  Google Scholar 

  • Chevrel S D, Pinet P C and Head J W 1999 Gruithuisen domes region: A candidate for an extended nonmare vol-canism unit on the Moon;J. Geophys. Res. 104(E7) 16,515–16,529.

    Article  Google Scholar 

  • Chevrel S D, Pinet P C, Daydou Y and Feldman W C 2002a Integration and comparison of Clementine and Lunar Prospector data: Global scale multielement analysis (Fe, Ti, and Th) of the lunar surface;Solar Sys. Res. 36(6) 458–465.

    Article  Google Scholar 

  • Chevrel S D, Pinet P C, Daydou Y, Maurice S, Lawrence D J, Feldman W C and Lucey P G 2002b Integration of the Clementine UV-VIS spectral reflectance data and the Lunar Prospector gamma-ray spectrometer data: A global-scale multielement analy- sis of the lunar surface using iron, titanium, and tho- rium abundances;J. Geophys. Res. 107(E12) 5132, doi:10.1029/2000JE001419.

    Article  Google Scholar 

  • Clark P E and McFadden L A 2000 New results and implica- tions for lunar crustal iron distribution using sensor data fusion techniques;J. Geophys. Res. 105(E2) 4291–4316.

    Article  Google Scholar 

  • Colwell J E and Jakosky B M 2002 Effects of topography on thermal infrared spectra of planetary surfaces;J. Geo- phys. Res. 107(E11) 5106, doi:10.1029/2001JE001829.

    Article  Google Scholar 

  • Cook A C, Oberst J, Roatsch T, Jaumann R and Acton C 1996 Clementine imagery: Selenographic coverage for car- tographic and scientific use;Planet. Space. Sci. 44(10) 1135–1148.

    Article  Google Scholar 

  • Cook A C, Watters T R, Robinson M S, Spudis P D and Bussey D B J 2000 Lunar polar topography derived from Clementine stereoimages;J. Geophys. Res. 105(E5) 12,023–12,033.

    Article  Google Scholar 

  • Craddock R A and Howard A D 2000 Simulated degrada- tion of lunar impact craters and a new method for age dating farside mare deposits;J. Geophys. Res. 105(E8) 20,387–20,401.

    Article  Google Scholar 

  • Davies M E and Colvin T R 2000 Lunar coordinates in the regions of the Apollo landers;J. Geophys. Res. 105(E8) 20,277–20,280.

    Article  Google Scholar 

  • Daydou Y H, Pinet P C, Chevrel S and Le Mouelic S 2003 A systematic intercalibration tool between multi- band imaging and spot spectra datasets;Planet. Space. Sci. 51(4–5) 309–317.

    Article  Google Scholar 

  • Duke M B 1998 Lunar polar ice: Implications for lunar devel- opment;J. Aero. Engg. 11(4) 124–128.

    Article  Google Scholar 

  • Eliason E M, Lee E M, Becker T L, Weller L A, Isbell C E, Staid M I, Gaddis L R, McEwen A S, Robin- son M S, Duxbury T, Steutel D, Blewett D T and Lucey P G 2003 A near-infrared (NIR) global multispec- tral map of the Moon from Clementine;Lunar and Plan- etary Science Conference XXXIV, Houston, TX, USA #2093.

    Google Scholar 

  • Elphic R C, Lawrence D J, Feldman W C, Barraclough B L, Maurice S, Binder A B and Lucey P G 1998 Lunar Fe and Ti abundances: Comparison of Lunar Prospector and Clementine data;Science 281(5382) 1493–1496.

    Article  Google Scholar 

  • Elphic R C, Lawrence D J, Feldman W C, Barraclough B L, Maurice S, Binder A B and Lucey P G 2000 Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observa- tions;J. Geophys. Res. 105(E8) 20,333–20,345.

    Article  Google Scholar 

  • Elphic R C, Lawrence D J, Feldman W C, Barraclough B L, Gasnault O M, Maurice S, Lucey P G, Blewett D T and Binder A B 2002 Lunar Prospector neutron spectrome- ter constraints on TiO2;J. Geophys. Res. 107(E4) 5024, doi:10.1029/2000JE001460.

    Article  Google Scholar 

  • Feldman W C, Gasnault O, Maurice S, Lawrence D J, Elphic R C, Lucey P G and Binder A B 2002 Global distribution of lunar composition: New results from Lunar Prospector;J. Geophys. Res. 107(E3) 5016, doi:10.1029/2001JE001506.

    Article  Google Scholar 

  • Fischer E M and Pieters C M 1996 Composition and exposure age of the Apollo 16 Cayley and Descartes regions from Clementine data: Normalizing the optical effects of space weathering;J. Geophys. Res. 101(E1) 2225–2234.

    Article  Google Scholar 

  • Floberghagen R, Visser P and Weischede F 1999 Lunar albedo force modeling and its effect on low lunar orbit and gravity field determination;Adv. Space Res. 23(4) 733–738.

    Article  Google Scholar 

  • Gaddis L R, Hawke B R, Robinson M S and Coombs C 2000 Compositional analyses of small lunar pyroclastic deposits using Clementine multispectral data;J. Geo- phys. Res. 105(E2) 4245–4262.

    Article  Google Scholar 

  • Gaddis L R, Staid M I, Tyburczy J A, Hawke B R and Petro N E 2003 Compositional analyses of lunar pyro- clastic deposits;Icarus 161(2) 262–280.

    Article  Google Scholar 

  • Ghent R R, Leverington D W and Campbell B A 2005 Earth-based observations of radar-dark crater haloes on the Moon: Implications for regolith properties;J. Geo- phys. Res. 110(E2) E02005, doi:10.1029/2004JE002366.

    Article  Google Scholar 

  • Giguere T A, Taylor G J, Hawke B R and Lucey P G 2000 The titanium contents of lunar mare basalts;Meteorit. Planet. Sci. 35(1) 193–200.

    Google Scholar 

  • Giguere T A, Hawke B R, Blewett D T, Bussey D B J, Lucey P G, Smith G A, Spudis P D and Taylor G J 2003 Remote sensing studies of the Lomonosov-Fleming region of the Moon;J. Geophys. Res. 108(E11) 5118, doi:10.1029/2003JE002069.

    Article  Google Scholar 

  • Gillis J J and Spudis P D 2000 Geology of the Smythii and Marginis region of the Moon: Using integrated remotely sensed data;J. Geophys. Res. 105(E2) 4217–4233.

    Article  Google Scholar 

  • Gillis J J and Jolliff B L 2003 A revised algo- rithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations;J. Geophys. Res. 108(E2) 5009, doi:10.1029/2001JE001515.

    Article  Google Scholar 

  • Gillis J J, Jolliff B L and Korotev R L 2004 Lunar surface geochemistry: Global concentrations of Th, K, and FeO as derived from Lunar Prospector and Clementine data;Geochim. Cosmochim. Acta 68(18) 3791–3805.

    Article  Google Scholar 

  • Grier J A and McEwen A S 1997 The small-comet hypoth- esis: An upper limit to the current impact rate on the Moon;Geophys. Res. Lett. 24(24) 3105–3108.

    Article  Google Scholar 

  • Grier J A, McEwen A S, Lucey P G, Milazzo M and Strom R G 2001 Optical maturity of ejecta from large rayed lunar craters;J. Geophys. Res. 106(E12) 32,847–32,862.

    Article  Google Scholar 

  • Hahn J M, Zook H A, Cooper B and Sunkara B 2002 Clementine observations of the zodiacal light and the dust content of the inner solar system;Icarus 158(2) 360–378.

    Article  Google Scholar 

  • Haskin L A, Gillis J J, Korotev R L and Jolliff B L 2000 The materials of the lunar Procellarum KREEP Ter- rane: A synthesis of data from geomorphological map- ping, remote sensing, and sample analyses;J. Geophys. Res. 105(E8) 20,403–20,415.

    Article  Google Scholar 

  • Hawke B R, Giguere T A, Blewett D T, Lucey P G, Smith G A, Taylor G J and Spudis P D 2002 Igneous activity in the southern highlands of the Moon;J. Geo- phys. Res. 107(E12) 5122, doi:10.1029/2000JE001494.

    Article  Google Scholar 

  • Hawke B R, Lawrence D J, Blewett D T, Lucey P G, Smith G A, Spudis P D and Taylor G J 2003a Hansteen Alpha: A volcanic construct in the lunar highlands;J. Geophys. Res. 108(E7) 5069, doi:10.1029/2002JE002013.

    Article  Google Scholar 

  • Hawke B R, Peterson C A, Blewett D T, Bussey D B J, Lucey P G, Taylor G J and Spudis P D 2003b Distribution and modes of occurrence of lunar anorthosite;J. Geophys. Res. 108(E6) 5050, doi:10.1029/2002JE001890.

    Article  Google Scholar 

  • Hawke B R, Blewett D T, Lucey P G, Smith G A, Bell J F, Campbell B A and Robinson M S 2004 The origin of lunar crater rays;Icarus 170(1) 1–16.

    Article  Google Scholar 

  • Head J W, Wilson L and Weitz C M 2002 Dark ring in southwestern Orientale Basin: Origin as a single pyroclastic eruption;J. Geophys. Res. 107(E1) 5001, doi:10.1029/2000JE001438.

    Article  Google Scholar 

  • Heather D J and Dunkin S K 2002a A stratigraphic study of southern Oceanus Procellarum using Clemen- tine multispectral data;Planet. Space. Sci. 50(14–15) 1299–1309.

    Article  Google Scholar 

  • Heather D J and Dunkin S K 2002b Crustal stratigraphy of the Al-Khwarizmi-King/Tsiolkovsky-Stark region of the lunar farside as seen by Clementine;Planet. Space. Sci. 50(14–15) 1311–1321.

    Article  Google Scholar 

  • Heather D J and Dunkin S K 2003 Geology and stratigraphy of King crater, lunar farside;Icarus 163(2) 307–329.

    Article  Google Scholar 

  • Heather D J, Dunkin S K and Wilson L 2003 Volcan- ism on the Marius Hills plateau: Observational analyses using Clementine multispectral data;J. Geophys. Res. 108(E3) 5017, doi:10.1029/2002JE001938.

    Article  Google Scholar 

  • Heiken G H, Vaniman D T and French B M 1991 Lunar Sourcebook: A User’s Guide to the Moon; Cambridge University Press, Cambridge, pp. 736.

    Google Scholar 

  • Hiesinger H, Head J W, Wolf U, Jaumann R and Neukum G 2003 Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum;J. Geophys. Res. 108(E7) 5065, doi:10.1029/2002JE001985.

    Article  Google Scholar 

  • Hillier J K, Buratti B J and Hill K 1999 Multispec- tral photometry of the Moon and absolute calibra- tion of the Clementine UV/V is camera;Icarus 141(2) 205–225.

    Article  Google Scholar 

  • Johnson J R, Swindle T D and Lucey P G 1999 Estimated solar wind-implanted helium-3 distribution on the Moon;Geophys. Res. Lett. 26(3) 385–388.

    Article  Google Scholar 

  • Johnson J R, Feldman W C, Lawrence D J, Mau- rice S, Swindle T D and Lucey P G 2002 Lunar Prospector epithermal neutrons from impact craters and landing sites: Implications for surface maturity and hydrogen distribution;J. Geophys. Res. 107(E2) 5008, doi:10.1029/2000JE001430.

    Article  Google Scholar 

  • Jolliff B L 1999 Clementine UVVIS multispectral data and the Apollo 17 landing site: What can we tell and how well?;J. Geophys. Res. 104(E6) 14,123–14,148.

    Article  Google Scholar 

  • Jolliff B, Gaddis L R, Ryder G, Neal C R, Shearer K, Elphic R C, Johnson J R, Keller L P, Korotev R L, Lawrence D J, Lucey P G, Papike J J, Pieters C M, Spudis P D and Taylor L A 2000a New views of the Moon;Eos 81(31) 349,354–349,355.

    Article  Google Scholar 

  • Jolliff B L, Gillis J J, Haskin L A, Korotev R L and Wieczorek M A 2000b Major lunar crustal terranes: Sur- face expressions and crust-mantle origins;J. Geophys. Res. 105(E2) 4197–4216.

    Article  Google Scholar 

  • Kodama S and Yamaguchi Y 2003 Lunar mare volcanism in the eastern nearside region derived from Clementine UV/VIS data;Meteorit. Planet. Sci. 38(10) 1461–1484.

    Article  Google Scholar 

  • Korotev R L and Gillis J J 2001 A new look at the Apollo 11 regolith and KREEP;J. Geophys. Res. 106(E6) 12,339–12,353.

    Article  Google Scholar 

  • Kreslavsky M A, Shkuratov Y G, Velikodsky Y I, Kaydash V G, Stankevich D G and Pieters C M 2000 Photometric properties of the lunar surface derived from Clementine observations;J. Geophys. Res. 105(E8) 20,281–20,295.

    Article  Google Scholar 

  • Kreslavsky M A and Shkuratov Y G 2003 Photo- metric anomalies of the lunar surface: Results from Clementine data;J. Geophys. Res. 108(E3) 5015, doi:10.1029/2002JE001937.

    Article  Google Scholar 

  • Lawrence D J, Feldman W C, Elphic R C, Little R C, Prettyman T H, Maurice S, Lucey P G and Binder A B 2002 Iron abundances on the lunar surface as mea- sured by the Lunar Prospector gamma-ray and neu- tron spectrometers;J. Geophys. Res. 107(E12) 5130, doi:10.1029/2001JE001530.

    Article  Google Scholar 

  • Lawrence D J, Elphic R C, Feldman W C, Prettyman T H, Gasnault O and Maurice S 2003 Small-area thorium fea- tures on the lunar surface;J. Geophys. Res. 108(E9) 5102, doi:10.1029/203JE002050.

    Article  Google Scholar 

  • Lawrence D J, Hawke B R, Hagerty J J, Elphic R C, Feldman W C, Prettyman T H and Vaniman D T 2005 Evidence for a high-Th, evolved lithology on the Moon at Hansteen Alpha;Geophys. Res. Lett. 32(7) L07201, doi:10.1029/2004GL022022.

    Article  Google Scholar 

  • Lawson S L, Jakosky B M, Park H S and Mellon M T 2000 Brightness temperatures of the lunar surface: Calibration and global analysis of the Clementine long-wave infrared camera data;J. Geophys. Res. 105(E2) 4273–4290.

    Article  Google Scholar 

  • Lawson S L and Jakosky B M 2001 Lunar surface thermophysical properties derived from Clementine LWIR and UVVIS images;J. Geophys. Res. 106(E11) 27,911–27,932.

    Article  Google Scholar 

  • Le Mouelic S, Langevin Y and Erard S 1999a The dis- tribution of olivine in the crater Aristarchus inferred from Clementine NIR data;Geophys. Res. Lett. 26(9) 1195–1198.

    Article  Google Scholar 

  • Le Mouelic S, Langevin Y and Erard S 1999b A new data reduction approach for the Clementine NIR data set: Application to Aristillus, Aristarchus and Kepler;J. Geo- phys. Res. 104(E2) 3833–3843.

    Article  Google Scholar 

  • Le Mouelic S, Langevin Y, Erard S, Pinet P, Chevrel S and Daydou Y 2000 Discrimination between matu- rity and composition of lunar soils from integrated Clementine UV-visible/near-infrared data: Application to the Aristarchus Plateau;J. Geophys. Res. 105(E4) 9445–9455.

    Article  Google Scholar 

  • Le Mouelic S and Langevin Y 2001 The olivine at the lunar crater Copernicus as seen by Clementine NIR data;Planet. Space. Sci. 49(1) 65–70.

    Article  Google Scholar 

  • Le Mouelic S, Lucey P G, Langevin Y and Hawke B R 2002 Calculating iron contents of lunar highland mate- rials surrounding Tycho crater from integrated Clemen- tine UV-visible and near-infrared data;J. Geophys. Res. 107(E10) 5074, doi:10.1029/2000JE001484.

    Article  Google Scholar 

  • Lemoine F G R, Smith D E, Zuber M T, Neumann G A and Rowlands D D 1997 A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data;J. Geophys. Res. 102(E7) 16,339–16,359.

    Article  Google Scholar 

  • Li L and Mustard J F 2000 Compositional gradients across mare-highland contacts: Importance and geological impli-cation of lateral transport;J. Geophys. Res. 105(E8) 20,431–20,450.

    Article  Google Scholar 

  • Li L and Mustard J F 2003 Highland contamination in lunar mare soils: Improved mapping with multiple end-member spectral mixture analysis (MESMA);J. Geophys. Res. 108(E6) 5053, doi:10.1029/2002JE001917.

    Article  Google Scholar 

  • Lucey P G, Spudis P D, Zuber M, Smith D and Malaret E 1994 Topographic-compositional units on the Moon and the early evolution of the lunar crust;Science 266(5192) 1855–1858.

    Article  Google Scholar 

  • Lucey P G, Taylor G J and Malaret E 1995 Abundance and distribution of iron on the Moon;Science 268(5214) 1150–1153.

    Article  Google Scholar 

  • Lucey P G, Blewett D T and Hawke B R 1998a Mapping the FeO and TiO2 content of the lunar surface multispectral imagery;J. Geophys. Res. 103(E2) 3679–3699.

    Article  Google Scholar 

  • Lucey P G, Taylor G J, Hawke B R and Spudis P D 1998b FeO and TiO2 concentrations in the South Pole-Aitken basin: Implications for mantle composition and basin for- mation;J. Geophys. Res. 103(E2) 3701–3708.

    Article  Google Scholar 

  • Lucey P G, Blewett D T and Jolliff B L 2000a Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images;J. Geophys. Res. 105(E8) 20,297–20,305.

    Google Scholar 

  • Lucey P G, Blewett D T, Taylor G J and Hawke B R 2000b Imaging of lunar surface maturity;J. Geophys. Res. 105(E8) 20,377–20,386.

    Google Scholar 

  • Lucey P G 2004 Mineral maps of the Moon;Geophys. Res. Lett. 31(8) L08701, doi:10.1029/2003GL019406.

    Article  Google Scholar 

  • Margot J, Campbell D B, Jurgens R F and Slade M A 1999 The topography of Tycho Crater;J. Geophys. Res. 104(E5) 11,875–11,882.

    Article  Google Scholar 

  • McCallum I S 2001 A new view of the moon in light of data from Clementine and Prospector missions;Earth, Moon and Planets 85-86 253–269.

    Article  Google Scholar 

  • McConnochie T H, Buratti B J, Hillier J K and Tryka K A 2002 A search for water ice at the lunar poles with Clementine images;Icarus 156(2) 335–351.

    Article  Google Scholar 

  • McEwen A S, Robinson M S, Eliason E M, Lucey P G, Duxbury T C and Spudis P D 1994 Clementine obser- vations of the Aristarchus region of the Moon;Science 266(5192) 1858–1862.

    Article  Google Scholar 

  • McEwen A S, Moore J M and Shoemaker E M 1997 The Phanerozoic impact cratering rate: Evidence from the far-side of the Moon;J. Geophys. Res. 102(E4) 9231–9242.

    Article  Google Scholar 

  • McEwen A S and Robinson M S 1997 Mapping of the moon by Clementine;Adv. Space Res. 19(10) 1523–1533.

    Article  Google Scholar 

  • Morota T and Furumoto M 2003 Asymmetrical distribution of rayed craters on the Moon;Earth Planet. Sci. Lett. 206(3–4) 315–323.

    Article  Google Scholar 

  • Murchie S, Robinson M, Clark B, Li H, Thomas P, Joseph J, Bussey B, Domingue D, Veverka J, Izenberg N and Chapman C 2002 Color variations on Eros from NEAR multispectral imaging;Icarus 155(1) 145–168.

    Article  Google Scholar 

  • Mustard J F, Li L and He G 1998 Nonlinear spectral mixture modeling of lunar multispectral data: Implica-tions for lateral transport;J. Geophys. Res. 103(E8) 19,419–19,425.

    Article  Google Scholar 

  • Nagumo K and Nakamura A M 2001 Reconsideration of crater size-frequency distribution on the Moon: effect of projectile population and secondary craters;Adv. Space Res. 28(8) 1181–1186.

    Article  Google Scholar 

  • Neumann G A, Zuber M T, Smith D E and Lemoine F G 1996 The lunar crust: Global structure and signa- ture of major basins;J. Geophys. Res. 101(E7) 16,841–16,863.

    Article  Google Scholar 

  • Nozette Set al 1994 The Clementine Mission to the Moon — Scientific overview;Science 266(5192) 1835–1839.

    Article  Google Scholar 

  • Nozette S, Lichtenberg C L, Spudis P, Bonner R, Ort W, Malaret E, Robinson M and Shoemaker E M 1996 The Clementine bistatic radar experiment;Science 274(5292) 1495–1498.

    Article  Google Scholar 

  • Nozette S, Spudis P D, Robinson M S, Bussey D B J, Lichtenberg C and Bonner R 2001 Integration of lunar polar remote-sensing data sets: Evidence for ice at the lunar south pole;J. Geophys. Res. 106(E10) 23,253–23,266.

    Article  Google Scholar 

  • Oberst J, Roatsch T, Zhang W, Cook A C, Jaumann R, Duxbury T, Wewel F, Uebbing R, Scholten F and Albertz J 1996 Photogrammetric analysis of Clementine multi-look angle images obtained near Mare Orientale;Planet. Space. Sci. 44(10) 1123–1133.

    Article  Google Scholar 

  • Pieters C M, Staid M I, Fischer E M, Tompkins S and He G 1994 A sharper view of impact craters from Clementine data;Science 266(5192) 1844–1848.

    Article  Google Scholar 

  • Pieters C M, Tompkins S, Head J W and Hess P C 1997 Min- eralogy of the mafic anomaly in the South Pole-Aitken basin: Implications for excavation of the lunar mantle;Geophys. Res. Lett. 24(15) 1903–1906.

    Article  Google Scholar 

  • Pieters C M and Tompkins S 1999 Tsiolkovsky crater: A window into crustal processes on the lunar farside;J. Geophys. Res. 104(E9) 21,935–21,949.

    Article  Google Scholar 

  • Pieters C M, Head J W, Gaddis L, Jolliff B and Duke M 2001 Rock types of South Pole—Aitken basin and extent of basaltic volcanism;J. Geophys. Res. 106(E11) 28,001–28,022.

    Article  Google Scholar 

  • Pinet P C, Shevchenko V V, Chevrel S D, Daydou Y and Rosemberg C 2000 Local and regional lunar regolith characteristics at Reiner Gamma Formation: Optical and spectroscopic properties from Clementine and Earth- based data;J. Geophys. Res. 105(E4) 9457–9475.

    Article  Google Scholar 

  • Ping J, Heki K, Matsumoto K and Tamura Y 2003 A degree 180 spherical harmonic model for the lunar topography;Adv. Space Res. 31(11) 2377–2382.

    Article  Google Scholar 

  • Potts L V and von Frese R R B 2003a Crustal attributes of lunar basins from terrain-correlated free- air gravity anomalies;J. Geophys. Res. 108b 5037, doi:10.1029/2000JE001446.

    Article  Google Scholar 

  • Potts L V and von Frese R R B 2003b Comprehensive mass modeling of the Moon from spectrally correlated free-air and terrain gravity data;J. Geophys. Res. 108(E4) 5024, doi:10.1029/2000JE001440.

    Article  Google Scholar 

  • Rajmon D and Spudis P 2004 Distribution and stratig- raphy of basaltic units in Maria Tranquillitatis and Fecunditatis: A Clementine perspective;Meteorit. Planet. Sci. 39(10) 1699–1720.

    Google Scholar 

  • Robinson M S and Jolliff B L 2002 Apollo 17 landing site: Topography, photometric corrections, and heterogeneity of the surrounding highland massifs;J. Geophys. Res. 107(E11) 5110, doi:10.1029/2001JE001614.

    Article  Google Scholar 

  • Robinson M S, Malaret E and White T 2003 A radiometric calibration for the Clementine HIRES camera;J. Geo- phys. Res. 108(E4) 5028, doi:10.1029/2000JE001241.

    Article  Google Scholar 

  • Robinson M S, Eliason E M, Hiesinger H, Jolliff B L, McEwen A S, Malin M C, Ravine M A, Roberts D, Thomas P C and Turtle E P 2005 LROC — Lunar Recon- naissance Orbiter Camera;Lunar and Planetary Science Conference XXXVI, Houston, TX, USA #1576.

  • Shkuratov Y G, Kreslavsky M A, Ovcharenko A A, Stankevich D G, Zubko E S, Pieters C and Arnold G 1999 Opposition effect from Clementine data and mechanisms of backscatter;Icarus 141(1) 132–155.

    Article  Google Scholar 

  • Shkuratov Y G, Kaidash V G, Kreslavsky M A and Opanasenko N V 2001 Absolute calibration of the Clementine UVVIS data: Comparison with ground-based observation of the Moon;Solar Sys. Res. 35(1) 29–34.

    Article  Google Scholar 

  • Shkuratov Y G, Stankevich D G, Kaydash V G, Omelchenko V V, Pieters C M, Pinet P C, Chevrel S D, Daydou Y H, Foing B H, Sodnik Z, Josset J L, Taylor L A and Shevchenko V V 2003 Composition of the lunar surface as will be seen from SMART-1: A simula- tion using Clementine data;J. Geophys. Res. 108(E4) 5020, doi:10.1029/2002JE001971.

    Article  Google Scholar 

  • Shoemaker E M, Robinson M S and Eliason E M 1994 South-Pole region of the Moon as seen by Clementine;Science 266(5192) 1851–1854.

    Article  Google Scholar 

  • Simpson R A and Tyler G L 1999 Reanalysis of Clementine bistatic radar data from the lunar South Pole;J. Geophys. Res. 104(E2) 3845–3862.

    Article  Google Scholar 

  • Smith D E, Zuber M T, Neumann G A and Lemoine F G 1997 Topography of the Moon from the Clementine lidar;J. Geophys. Res. 102(E1) 1591–1611.

    Article  Google Scholar 

  • Spudis P D, Reisse R A and Gillis J J 1994 Ancient mul- tiring basins on the Moon revealed by Clementine laser altimetry;Science 266(5192) 1848–1851.

    Article  Google Scholar 

  • Staid M I, Pieters C M and Head J W 1996 Mare Tranquil- litatis: Basalt emplacement history and relation to lunar samples;J. Geophys. Res. 101(E10) 23,213–23,228.

    Article  Google Scholar 

  • Staid M I and Pieters C M 2000 Integrated spectral analysis of mare soils and craters: Applications to eastern nearside basalts;Icarus 145(1) 122–139.

    Article  Google Scholar 

  • Staid M I and Pieters C M 2001 Mineralogy of the last lunar basalts: Results from Clementine;J. Geophys. Res. 106(E11) 27,887–27,900.

    Article  Google Scholar 

  • Tompkins S and Pieters C M 1999 Mineralogy of the lunar crust: Results from Clementine;Meteorit. Planet. Sci. 34(1) 25–41.

    Google Scholar 

  • von Frese R R B, Tan L, Potts L V, Kim J W, Merry C J and Bossler J D 1997 Lunar crustal analysis of Mare Orientale from topographic and gravity correlations;J. Geophys. Res. 102(E11) 25,657–25,675.

    Article  Google Scholar 

  • Warell J and Blewett D T 2004 Properties of the Hermean regolith: V. New optical reflectance spectra, compari- son with lunar anorthosites, and mineralogical modelling;Icarus 168(2) 257–276.

    Article  Google Scholar 

  • Watters T R and Konopliv A S 2001 The topography and gravity of Mare Serenitatis: implications for subsidence of the mare surface;Planet. Space. Sci. 49(7) 743–748.

    Article  Google Scholar 

  • Weitz C M, Head J W and Pieters C M 1998 Lunar regional dark mantle deposits: Geologic, multispectral, and mod- eling studies;J. Geophys. Res. 103(E10) 22,725–22,759.

    Article  Google Scholar 

  • Weitz C M and Head J W 1999 Spectral properties of the Marius Hills volcanic complex and implications for the formation of lunar domes and cones;J. Geophys. Res. 104(E8) 18,933–18,956.

    Article  Google Scholar 

  • Wieczorek M A and Phillips R J 1997 The structure and compensation of the lunar highland crust;J. Geophys. Res. 102(E5) 10,933–10,943.

    Article  Google Scholar 

  • Wieczorek M A and Phillips R J 1998 Potential anomalies on a sphere: Applications to the thickness of the lunar crust;J. Geophys. Res. 103(E1) 1715–1724.

    Article  Google Scholar 

  • Wieczorek M A and Phillips R J 1999 Lunar multir- ing basins and the cratering process;Icarus 139(2) 246–259.

    Article  Google Scholar 

  • Wieczorek M A and Zuber M T 2001 The composition and origin of the lunar crust: Constraints from central peaks and crustal thickness modeling;Geophys. Res. Lett. 28(21) 4023–4026.

    Article  Google Scholar 

  • Wieczorek M A, Zuber M T and Phillips R J 2001 The role of magma buoyancy on the eruption of lunar basalts;Earth Planet. Sci. Lett. 185(1–2) 71–83.

    Article  Google Scholar 

  • Wilhelms D E 1987The Geologic History of the Moon; Gov- ernment Printing Office, Washington, D.C., pp. 302.

    Google Scholar 

  • Williams K K and Zuber M T 1998 Measurement and analysis of lunar basin depths from Clementine altimetry;Icarus 131(1) 107–122.

    Article  Google Scholar 

  • Yingst R A and Head J W 1997 Volumes of lunar lava ponds in South Pole—Aitken and Orientale Basins: Implications for eruption conditions, transport mech- anisms, and magma source regions;J. Geophys. Res. 102(E5) 10,909–10,931.

    Article  Google Scholar 

  • Yingst R A and Head J W 1998 Characteristics of lunar mare deposits in Smythii and Marginis basins: Implica- tions for magma transport mechanisms;J. Geophys. Res. 103(E5) 11,135–11,158.

    Article  Google Scholar 

  • Yingst R A and Head J W 1999 Geology of mare deposits in South Pole-Aitken basin as seen by Clementine UV/VIS data;J. Geophys. Res. 104(E8) 18,957–18,979.

    Article  Google Scholar 

  • Yokota Y, Iijima Y, Honda R, Okada T and Mizutani H 1999 Photometric properties of the moon: phase curves at small phase angles (0–10‡) by Clementine images;Adv. Space Res. 23(11) 1841–1844.

    Article  Google Scholar 

  • Zellner NEB, Spudis P D, Delano J W and Whittet D C B 2002 Impact glasses from the Apollo 14 landing site and implications for regional geology;J. Geophys. Res. 107(E11) 5102, doi:10.1029/2001JE001800.

    Article  Google Scholar 

  • Zuber M T, Smith D E, Lemoine F G and Neumann G A 1994 The shape and internal structure of the Moon from the Clementine Mission;Science 266(5192) 1839–1843.

    Article  Google Scholar 

  • Zuber M T and Smith D E 1997 Topography of the lunar south polar region: Implications for the size and location of permanently shaded areas;Geophys. Res. Lett. 24(17) 2183–2186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, M., Riner, M. Advances in lunar science from the Clementine mission: A decadal perspective. J Earth Syst Sci 114, 669–686 (2005). https://doi.org/10.1007/BF02715951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715951

Keywords

Navigation