Skip to main content
Log in

Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm speciesOryza sativa, Zea mays, Triticum aestivum andArabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in chloroplast genes, suggesting different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots suggested that nucleotide compositional constraint had a large contribution to codon usage bias of nuclear genes inO. sativa, Z. mays, andT. aestivum, whereas natural selection was likely to be playing a large role in codon usage bias in chloroplast genomes. Correspondence analysis and chi-test showed that regardless of the genomic environment (species) of the host, the codon usage pattern of chloroplast genes differed from nuclear genes of their host species by their AU-richness. All the chloroplast genomes have predominantly A- and/or U-ending codons, whereas nuclear genomes have G-, C- or U-ending codons as their optimal codons. These findings suggest that the chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear genome. However, one feature common to both chloroplast and nuclear genomes in this study was that pyrimidines were found more frequently than purines at the synonymous codon position of optimal codons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellgard M., Schibeci D., Trifonov E. and Gojobori T. 2001 Early detection of G + C differences in bacterial species inferred from the comparative analysis of the two completely sequencedHelicobacter pylori strains.J. Mol. Evol. 53, 465–468.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G. 1993 The isochore organization of the human genome and its evolutionary history—a review.Gene 135, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Bulmer M. 1988 Are codon usage patterns in unicellular organisms determined by selectionmutation balance?J. Mol. Biol. 1, 15–26.

    Google Scholar 

  • Campbell W. H. and Gowri G. 1990 Codon usage in higher plants, green algae, and cyanobacteria.Plant Physiol. 92, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Chiapello H., Lisacek F., Caboche M. and Hénaut A. 1998 Codon usage and gene function are related in sequences ofArabidopsis thaliana.Gene 209, GC1-GC38.

    Article  PubMed  CAS  Google Scholar 

  • de Amicis F. and Marchetti S. 2000 Intercodon dinucleotides affect codon choice in plant genes.Nucleic Acids Res. 28, 3339–3345.

    Article  PubMed  Google Scholar 

  • Duret L. 2000 tRNA gene number and codon usage in theC. elegans genome are coadapted for optimal translation of highly expressed genes.Trends Genet. 16, 287–289.

    Article  PubMed  CAS  Google Scholar 

  • Duret L. and Mouchiroud D. 1999 Expression pattern and, surprisingly, gene length shape codon usage inCaenorhabditis, Drosophila, andArabidopsis.Proc. Natl. Acad. Sci. USA 96, 4482–4487.

    Article  PubMed  CAS  Google Scholar 

  • Fennoy S. L. and Bailey-Serres J. 1993 Synonymous codon usage inZea mays L. nuclear genes is varied by levels of C and Gending codons.Nucleic Acids Res. 21, 5294–5300.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez V., Zavala A. and Musto H. 2001 Evidence for translational selection in codon usage inEchinococcus spp.Parasitology 123, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Grantham R., Gautier C. and Gouy M. 1980 Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type.Nucleic Acids Res. 8, 1893–1912.

    Article  PubMed  CAS  Google Scholar 

  • Greenacre M. J. 1984Theory and applications of correspondence analysis. Academic Press, London.

    Google Scholar 

  • Grocock R. J. and Sharp P. M. 2002 Synonymous codon usage inPseudomonas aeruginosa PA01.Gene 289, 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Gu W., Zhou T., Ma J., Sun X. and Lu Z. 2004. The relationship between synonymous codon usage and protein structure inEscherichia coli andHomo sapiens.BioSystems 73, 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Gupta S. K., Bhattacharyya T. K. and Ghosh T. C. 2004 Synonymous codon usage inLactococcus lactis: mutational bias versus translational selection.J. Biomol. Struct. Dyn. 21, 1–9.

    Google Scholar 

  • Hou Z. C. and Yang N. 2003 Factors affecting codon usage inYersinia pestis.Acta Biochimica et Biophysica Sinica 35, 580–586.

    PubMed  CAS  Google Scholar 

  • Iannacone R., Grieco P. D. and Cellini F. 1997 Specific sequence modifications of a cry3B endotoxin gene result in high levels of expression and insect resistance.Plant Mol. Biol. 34, 485–496.

    Article  PubMed  CAS  Google Scholar 

  • Ikemura T. 1985 Codon usage and tRNA content in unicellular and multicellular organisms.Mol. Biol. Evol. 2, 13–34.

    PubMed  CAS  Google Scholar 

  • Karlin S. and Mrázek J. 1996 What drives codon choices in human genes?J. Mol. Biol. 262, 459–472.

    Article  PubMed  CAS  Google Scholar 

  • Kawabe A. and Miyashita N. T. 2003 Patterns of codon usage bias in three dicot and four monocot plant species.Genes Genet. Syst. 78, 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchil S., Satoh K., Nagata T., Kawagashira N., Doi K., Kishimoto N., Yazaki J., Ishikawa M., Yamada H. and Ooka H. 2003 Collection, mapping, and annotation of over 28000 cDNA clones fromjaponica rice.Science 301, 376–379.

    Article  Google Scholar 

  • Lerat E., Capy P. and Biémont C. 2002 Codon usage by transposable elements and their host genes in five species.J. Mol. Evol. 54, 625–637.

    Article  PubMed  CAS  Google Scholar 

  • Liu Q. P., Feng Y., Zhao X., Dong H. and Xue Q. Z. 2004 Synonymous codon usage bias inOryza sativa.Plant Sci. 167, 101–105.

    Article  CAS  Google Scholar 

  • Moriyama E. N. and Powell J. R. 1998 Gene length and codon usage bias inDrosophila melanogaster, Saccharomyces cerevisiae andEscherichia coli.Nucleic Acids Res. 26, 3188–3193.

    Article  PubMed  CAS  Google Scholar 

  • Morton B. R. 1998 Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages.J. Mol. Evol. 46, 449–459.

    Article  PubMed  CAS  Google Scholar 

  • Morton B. R. 1999 Strand asymmetry and codon usage bias in the chloroplast genome ofEuglena gracilis.Proc. Natl. Acad. Sci. USA 96, 5123–5128.

    Article  PubMed  CAS  Google Scholar 

  • Morton B. R. 2003 The role of contextdependent mutations in generating compositional and codon usage bias in grass chloroplast DNA.J. Mol. Evol. 56, 616–629.

    Article  PubMed  CAS  Google Scholar 

  • Murray E. E., Lotzer J. and Eberle M. 1989 Codon usage in plant genes.Nucleic Acids Res. 17, 477–498.

    Article  PubMed  CAS  Google Scholar 

  • Musto H., Cruveiller S., Onofrio G. D., Romero H. and Bernardi G. 2001 Translational selection on codon usage inXenopus laevis.Mol. Biol. Evol. 18, 1703–1707.

    PubMed  CAS  Google Scholar 

  • Naya H., Romero H., Carels N., Zavala A. and Musto H. 2001 Translational selection shapes codon usage in the GCrich genomes ofChlamydomonas reinhardtii.FEBS Lett. 501, 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Peixoto L., Zavala A., Romero H. and Musto H. 2003 The strength of translational selection for codon usage varies in the three replicons ofSinorhizobium melioti.Gene 320, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Percudani R., Pavesi A. and Ottonello S. 1997 Transfer RNA gene redundancy and translational selection inSaccharomyces cerevisiae.J. Mol. Biol. 268, 322–330.

    Article  PubMed  CAS  Google Scholar 

  • Romero H., Zavala A. and Musto H. 2000 Codon usage inChlamydia trachomatis is the result of strandspecific mutational biases and a complex pattern of selective forces.Nucleic Acids Res. 28, 2084–2090.

    Article  PubMed  CAS  Google Scholar 

  • Romero H., Zavala A., Musto H. and Bernardi G. 2003 The influence of translational selection on codon usage in fishes from the family Cyprinidae.Gene 317, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Rouwendal G. J. A., Mendes O., Wolbert E. J. H. and de Boer A. D. 1997 Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage.Plant Mol. Biol. 33, 989–999.

    Article  PubMed  CAS  Google Scholar 

  • Salinas J., Matassi G., Montero L. M. and Bernardi G. 1988 Compositional compartmentalization and compositional patterns in the nuclear genomes of plants.Nucleic Acids Res. 16, 4269–4285.

    Article  PubMed  CAS  Google Scholar 

  • Sharp P. M. and Li W. H. 1986 An evolutionary perspective on synonymous codon usage in unicellular organisms.J. Mol. Evol. 24, 28–38.

    Article  PubMed  CAS  Google Scholar 

  • Sharp P. M. and Matassi G. 1994 Codon usage and genome evolution.Curr. Opin. Genet. Dev. 4, 851–860.

    Article  PubMed  CAS  Google Scholar 

  • Sharp P. M., Stenico M., Peden J. F. and Lloyd A. T. 1993 Codon usage: mutational bias, translational selection, or both?Biochem. Soc. Trans. 21, 835–841.

    PubMed  CAS  Google Scholar 

  • Sharp P. M., Tuohy T. M. and Mosurski K. R. 1986 Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes.Nucleic Acids Res. 14, 5125–5143.

    Article  PubMed  CAS  Google Scholar 

  • Shi X. F., Huang J. F., Liang C. R., Liu S. Q., Xie J. and Liu C. Q. 2001 Is there a close relationship between synonymous codon bias and codonanticodon binding strength in human genes?Chinese Sci. Bulletin 12, 1015–1019.

    Article  Google Scholar 

  • Shields D. C., Sharp P. M., Higgins D. G. and Wright F. 1988 “Silent” sites inDrosophila genes are not neutral: evidence of selection among synonymous codons.Mol. Biol. Evol. 5, 704–716.

    PubMed  CAS  Google Scholar 

  • Singer G. A. C. and Hickey D. A. 2003 Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content.Gene 317, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Stenico M., Lloyd A. T. and Sharp P. M. 1994 Codon usage inCaenorhabditis elegans: delineation of translational selection and mutational biases.Nucleic Acids Res. 22, 2437–2446.

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N. 1988 Directional mutation pressure and neutral molecular evolution.Proc. Natl. Acad. Sci. USA 85, 2653–2657.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M. 1992 The chloroplast genome.Plant Mol. Biol. 19, 149–168.

    Article  PubMed  CAS  Google Scholar 

  • Wright F. 1990 The “effective number of codons” used in a gene.Gene 87, 23–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Xue, Q. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J Genet 84, 55–62 (2005). https://doi.org/10.1007/BF02715890

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715890

Keywords

Navigation