Skip to main content
Log in

Behaviour genetics ofDrosophila: Non-sexual behaviour

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The analysis of genetic behaviour within and between species provides important clues about the forces shaping the evolution of behavioural genes. Genes can affect natural behavioural variation in different ways. Allelic variation causes alternative behavioural phenotypes, whereas changes in gene expression can influence the initiation of behaviour at different ages. Identifying the genes involved in polygenic traits has been difficult. Chromosomal analysis has been widely used as a first step in elucidating the genetic architecture of several behaviours ofDrosophila. Behavioural genetic and molecular studies helped to reveal the genetic basis of circadian time keeping and rhythmic behaviours. InDrosophila, a number of key processes such as emergence from the pupal case, locomotor activity, feeding, olfaction and aspects of mating behaviour are under circadian regulation. Evolutionary biology considers migration behaviour as central in genetic structure of populations and speciation. Genetic loci that influence behaviour are often difficult to identify and localise in part due to the quantitative nature of behavioural phenotypes. Diapause is a hormonally mediated delayed response to future adverse conditions and can occur at any stage of development in an insect. Diapauseassociated gene expression was studied inDrosophila using subtractive hybridisation. Several approaches have been made to unravel the genetic complexity of the behaviour, which have provided information that may be useful in different ways. There is evidence that species do differ in genetic architecture of photoresponse and this may be related to their natural environment. The classical experiments by Jerry Hirsh and Th. Dobzhansky to know the nature of genetic basis for extreme selected geotactic behaviour in fruit flies constituted the first attempt at the genetic dissection of a complex, polygenic behaviour. Understanding the genetic differences between these selected lines would provide an important point of entry into the study of genetic mechanisms of sensing and responding to gravity, as well as clues to the origins of genetic flexibility and plasticity in an organism’s response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akten B., Jauch E., Genova G. K., Kim E. Y., Edery I., Raabe T. and Jackson F. R. 2003 A role for CK2 in theDrosophila circadian oscillator.Nature Neuro. 6, 208–210.

    Article  CAS  Google Scholar 

  • Albornoz J. and Dominguez A. 1987 Genetic analysis ofDrosophila melanogaster egg insertion behaviour.Behav. Genet. 17, 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Allada R. 2003 Circadian clocks: a tale of two feed back loops.Cell 112, 284–286.

    Article  PubMed  CAS  Google Scholar 

  • Allemand R. 1991 Chromosomal analysis of the circadian oviposition behaviour in selected lines ofDrosophila melanogaster.Drosophila Inf. Serv. 70, 23–24.

    Google Scholar 

  • Allemand R. and David J. R. 1984 Genetic analysis of the circadian oviposition rhythm inDrosophila melanogaster: Effects of drifts in laboratory strains.Behav. Genet. 14, 31–34.

    Article  PubMed  CAS  Google Scholar 

  • Alt S., Ringo J., Talyn B., Bray W. and Dowse H. 1998 The period gene controls courtship song cycles inDrosophila melanogaster.Anim. Behav. 56, 87–97.

    Article  PubMed  Google Scholar 

  • Amlou M., Moreteau B. and David J. R. 1998 Larval tolerance in theDrosophila melanogaster species complex toward the two toxic acids of theDrosophila sechellia host plant.Hereditas 129, 7–14.

    Article  PubMed  CAS  Google Scholar 

  • Andersson A. 1986 Genetic influence on foraging behaviour inDrosophila melanogaster larvae.Hereditas 105, 229–231.

    Article  Google Scholar 

  • Asada N. 1988 Pyokori-like jumping behaviour in theDrosophila nasuta subgroup.Jap. J. Genet. 63, 295–301.

    Article  Google Scholar 

  • Ball E., Ball S. P. and Sparrow J. C. 1985 A mutant affecting larval muscle development inDrosophila melanogaster.Dev. Genet. 6, 77–92.

    Article  Google Scholar 

  • Barker J. S. F. and Starmer W. T. 1999 Environmental effects and the genetics of oviposition site preference for natural yeast substrates inDrosophila buzzatii.Hereditas 130, 145–175.

    Article  PubMed  Google Scholar 

  • Barker J. S. F., Starmer W. T. and Fogleman J. C. 1994 Genotype-specific habitat selection for oviposition sites in the cactophilic speciesDrosophila buzzatii.Heredity 72, 384–395.

    Article  PubMed  Google Scholar 

  • Basden E. B. 1952 Some Drosophilidae (Diptera) of the British Isles.Ent. Mon. Mag.,88, 200–201.

    Google Scholar 

  • Basden E. B. 1954a The distribution and biology of Drosophilidae (Diptera) in Scotland including a new species ofDrosophila.Trans Royal Society Edinb. 62, 602–654.

    Google Scholar 

  • Basden E. B. 1954b Diapause inDrosophila (Diptera: Drosophilidae)Proc. Roy. Ent. Soc. London A29, 114–118.

    Google Scholar 

  • Bauer S. J. and Sokolowski M. B. 1985 A genetic analysis of path length and pupation height in a natural population ofDrosophila melanogaster.Can. J. Genet. Cytol. 27, 334–340.

    Google Scholar 

  • Bauer S. J. and Sokolowski M. B. 1988 Autosomal and maternal effects on pupation behaviour inDrosophila melanogaster.Behav. Genet. 18, 81–97.

    Article  PubMed  CAS  Google Scholar 

  • Beck S. D. 1980Insect Photoperiodism, 2nd ed. Academic Press, New York.

    Google Scholar 

  • Benzer S. 1967 Behavioural mutants ofDrosophila isolated by counter current distribution.Proc. Nat. Acad. Sci. USA 58, 1112–1119.

    Article  PubMed  CAS  Google Scholar 

  • Boynton S. and Tully T. 1992latheo a new gene involved in associative learning and memory inDrosophila melanogaster identified from P element mutagenesis.Genetics 131, 655–672.

    PubMed  CAS  Google Scholar 

  • Broadhurst P. L. and Jinks J. L. 1974 What genetical architecture can tell us about the natural selection of behavioural traits. InThe genetics of behaviour (ed. J. H. F. Van Abeelen) North-Holland Publ. Co. Amsterdam.

    Google Scholar 

  • Burnet B., Sewell D. and Bos M. 1977 Genetic analysis of larval feeding behaviour inDrosophila melanogaster. II Growth relations and competition between selected lines.Genet. Res. 30, 149–161.

    Google Scholar 

  • Burnet B., Burnet L., Connolly K. and Williamson N. 1988 A genetic analysis of locomotor activity inDrosophila melanogaster.Heredity 61, 111–119.

    Article  Google Scholar 

  • Buzzati-Traverso A. 1944 Istituto Lombardo di science e lettere,Rendiconti,77, 39–49.

    Google Scholar 

  • Carpenter F. W. 1905 The reactions of the pomace fly (Drosophila ampelophila Loew) to light, gravity and mechanical stimulation.Amer. Nat. 39, 157–171.

    Article  Google Scholar 

  • Carson H. L. 1958 Response to selection under differant conditions of recombination inDrosophila.Cold Spring Harbour Symposium on Quantitative Biology.23, 291–306.

    CAS  Google Scholar 

  • Carson H. L. 1971The ecology of Drosophila Breeding sites. Harold L. Lyon. Arboretum Lecture Number two. University of Hawaii, Honolulu. pp. 127.

    Google Scholar 

  • Carson H. L. and Stalker H. D. 1948 Reproductive diapause inDrosophila robusta.Proc. Nat. Acad. Sci. USA.34, 124–129.

    Article  PubMed  CAS  Google Scholar 

  • Carson H. L., Hardy D. E., Spieth H. T. and Stone W. S. 1970 The evolutionary biology of the Hawaiian Drosophilidae: InEssays in Evolution and Genetics in Honour of Th. Dobzhansky (ed. M. K. Hecht and W. C. Steere). pp. 437–543. Applition Century-Crofts, New York.

    Google Scholar 

  • Casares P. and Rubio J. 1984 Competencia interespecifica entre los preadultos deDrosophila melanogaster Drosophila simulans.Medio Ambiente 7, 3–8.

    Google Scholar 

  • Casares P. and Carracedo M. C. 1986a Genetic variation in pupation height in a population ofDrosophila simulans.Genetica 70, 17–22.

    Article  Google Scholar 

  • Casares P. and Carracedo M. C. 1986b Genotype environment interaction for pupation height inD. simulans.Braz. J. Genet. 9, 421–431.

    Google Scholar 

  • Casares P. and Carracedo M. C. 1986c On selecting for pupation height inDrosophila simulans.Experientia 42, 1289–1291.

    Article  Google Scholar 

  • Casares P., Carracedo M. C. and Garcia-Florez L. 1997 Analysis of larval behaviour underlying in pupation height phenotype inDrosophila simulans andD. melanogaster.Genet. Sel. Evol. 29, 589–600.

    Article  Google Scholar 

  • Ceriani M. F., Hogenesch J. B., Yanovesky M., Panda D., Straume M. and Kay S. A. 2002 Genome wide expression analysis inDrosophila reveals genes controlling circadian behaviour.J. Neuro. 22, 9305–9319.

    CAS  Google Scholar 

  • Connolly K. 1967 Locomotor activity inDrosophila III A distinction between activity and reactivity.Anim. Behav. 15, 149–152.

    Article  PubMed  CAS  Google Scholar 

  • Cook R. M. 1979 The courtship tracking ofDrosophila melanogaster.Biol. Cyber. 34, 91–106.

    Article  Google Scholar 

  • Costa R., Zona A., Osti M. and Jayakar D. 1989 Genetic analysis of adult locomotor activity inDrosophila melanogaster.Heredity 63, 107–117.

    Article  Google Scholar 

  • Cyran S. A., Buchsbaern A. M., Reddy K. L., Lin M. C., Glossop N. R., Hardin P. E. Young M. W., Storti R. V. and Blau J. 2003 Vrilla, Pdp1, and d clock form a second feedback loop in theDrosophila circadian clock.Cell.112, 329–341.

    Article  PubMed  CAS  Google Scholar 

  • Danks H. V. 1987Insect Dormancy: An Ecological Perspective Biological Survey of Canada (Terrestrial Arthropods), Ottawa, p. 439.

  • De Belle, J. S. and Sokolowski M. B. 1987 Heredity of rover/sitter: Alternative forgaing strategies of Drosophila melanogaster larvae.Heredity,59, 73–83.

    Article  Google Scholar 

  • De Belle, J. S. and Sokolowski M. B. 1989 Rover/sitter foraging behaviour in Drosphila melanogaster: Genetic localization to chromosome-2L using autosomes.J. Insect. Behav. 2, 291–299.

    Article  Google Scholar 

  • De Belle J. S., Hilliker A. J. and Sokolowski M. B. 1989 Genetic localization of forgaing (for) A major gene for larval behaviour inDrosophila melanogaster.Genetics.123, 157–163.

    PubMed  Google Scholar 

  • De Jong J. 1982 The influence of dispersal pattern on the evolution of fecundity.Nethr. J. Zool. 32, 1–30.

    Article  Google Scholar 

  • De Solar E. 1968 Selection for and against gregariousness in the choice of ovipostion sites byDrosophila pseudoobscura.Genetics,58, 275–282.

    PubMed  Google Scholar 

  • De Souza H. M. L., Da Cunha A. B. and Dos Santos E. P. 1970 Adaptive polymorphism of behaviour evolved in laboratory populationsof Drosophila willistoni.Amer. Natur. 104, 175–189.

    Article  Google Scholar 

  • Denlinger D. L. Joplin K. H., Flanngan R. D., Tammarielo S. P., Zhang M. L., Yocum G. D. and Lee K. Y. 1995 Diapause specific gene expression. InMolecular mechanisms of Insect metamorphosis and diapause (ed. A. Suzuki, H. Kataoka and S. Matsumoto) (Industrial publishing and consulting Inc. Tokyo.) Pp. 289–297.

    Google Scholar 

  • Demerec M. 1950 Biology ofDrosophila. Hafner, New York.

    Google Scholar 

  • Diagana T. T., Thomas U., Prokopenko S. N., Xiao B., Worley P. F. and Thoma J. B. 2002 Mutation ofDrosophila homer disrupts control of locomotor activity and behavioural plasticity.J. Neuro. 22, 428–436.

    CAS  Google Scholar 

  • Dingle H. 1978Evolution of Insect Migration and Diapause. Springer Verlag, New York.

    Google Scholar 

  • Dobzhansky Th. and Spassky B. 1967 Effects of selection and migration on geotactic and phototactic behaviour ofDrosophila.Proc. Royal Soc. 168, 723–734.

    Google Scholar 

  • Dobzhansky Th., Pavlovsky O. and Andregg M. 1975 Distribution among the chromosomes ofDrosophila pseudoobscura of the genes governing the response to light.Genetics 81, 357–367.

    PubMed  CAS  Google Scholar 

  • Dowse H. B.,. Dushay M. S., Hall J. C. and Ringo J. M. 1989 High resolution analysis of locomotor activity rhythm in disconnected, a visual system mutant ofDrosophila melanogaster.Behav. Genet. 19, 529–542.

    Article  PubMed  CAS  Google Scholar 

  • Erlenmayer-Kimling L., Hirsh J. and Weiss J. M. 1962 Studies in experimental behaviour genetics, III Selection and hybridization analysis of individual differences in the sign of geotaxis.J. Comp. Phys. Psych. 53, 722–731.

    Article  Google Scholar 

  • Ewing A. W. 1963 Attempts to select for spontaneous activity inDrosophila melanogaster.Anim. Behav. 11, 369–378.

    Article  Google Scholar 

  • Falconer D. S. 1981 Introduction to Quantilative Genetics Ed. 2. Longman. New York.

    Google Scholar 

  • Garcia-Florez L., Casares P. and Carracedo M. C. 1989 Selection for pupation height inDrosophila melanogaster.Genetica 79, 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs S. M., Becker A., Hardy R. W. and Truman J. W. 2001 Soluble guanylate cyclase is required during development for visual system function inDrosophila.J. Neuro. 21, 7704–7714.

    Google Scholar 

  • Godoy-Herrera R. 1994 Biometrical analysis of larval digging behaviour inDrosophila melanogaster.Behav. Genet. 24, 427–432.

    Article  PubMed  CAS  Google Scholar 

  • Godoy-Herrera R., Alarcon M., Casares H., Loyda I. Navarrete I. and Vega J. L. 1992 The development of the photoresponse inDrosophila melanogaster larva.Rev. Chilena Hist. Nat. 65, 95–101.

    Google Scholar 

  • Godoy-Herrera R., Burnet B., Connolly K., Grey D. and Weir I. 1994 Disruption of the structure of larval foraging behaviour in interspecific hybrids inDrosophila.Heredity 72, 260–268.

    Article  PubMed  Google Scholar 

  • Gonzalez D. 1990 Genetics of factors affecting the life history ofDrosophila melanogaster IV cytoplasmic/maternal factors affect egg insertion behaviour.Behav. Genet. 20, 675–686.

    Article  PubMed  CAS  Google Scholar 

  • Gordesky-Gold B., Warrick J. M., Bixler A., Beasley J. E. and Tompkins L. 1995 Hypomorphic mutations in the larval photokinesis A (lpha) gene have stage-specific effects on visual system function inDrosophila melanogaster.Genetics 139, 1623–1629.

    PubMed  CAS  Google Scholar 

  • Greenspan R. J. and. Ferveur J. F. 2000 Courtship inDrosophila.Ann. Rev. Genet. 34, 205–232.

    Article  PubMed  CAS  Google Scholar 

  • Grigliatti T. 1986 Mutagenesis InDrosophila: A practical Approach (ed. Roberts D. B.), IRI-Press, Oxford, pp. 31–58.

    Google Scholar 

  • Grossfield J. 1978 Non sexual behaviour ofDrosophila. InThe Genetics and Biology of Drosophila (ed. M. Ashburner and T. R. F. Wright) (New York: Academic Presss) Vol. 2b pp. 1–126.

    Google Scholar 

  • Grossfield J. and Sakmi B. 1972 Divergence in the neural control of oviposition inDrosophila.J. Insect Phys. 18, 237–241.

    Article  Google Scholar 

  • Hadler N. 1964a Genetic influence on phototaxis inDrosophila melanogaster Biol. Bull. 126, 264–273.

    Article  Google Scholar 

  • Hadler N. 1964b Heritability and phototaxis inDrosophila melanogaster Genetics,50, 1269–1277.

    PubMed  CAS  Google Scholar 

  • Hall J. C. 1982 Genetics of the nervous system inDrosophila.Quart. Rev. Biophy. 15, 223–479.

    Article  CAS  Google Scholar 

  • Hall J. C. 1985 Genetic analysis of behaviour in insects. InComparative Insect Physiology, Biochemistry and Pharmacology (ed. Kerkut G. A., Gilbert L. I.) (Pergamon Press, Oxford.) pp. 287–373.

    Google Scholar 

  • Hall J. C. 1995 Molecular mechanisms of bilogical clocks.Tren Neuro. 18, 230–240.

    Article  CAS  Google Scholar 

  • Hall J. C. and Rosbash M. 1988 Mutation and molecular influencing biological rhythms.Annu. Rev. Neurosci. 11, 373–393.

    Article  PubMed  CAS  Google Scholar 

  • Hayman B. 1954 The analysis of variance of diallel tables.Biometrics 10, 235–244.

    Article  Google Scholar 

  • Heisenberg M. 1997 Genetic approach to neuroethologyBioessays 19, 1065–1073.

    Article  PubMed  CAS  Google Scholar 

  • Helfrich-Forster C. 1996Drosophila rhythms: from brain to behaviour.Cell Dev. Biol. 7, 791–802.

    Article  Google Scholar 

  • Hirsh J. 1959 Studies in experimental behaviour genetics II. Individual differences in geotaxis as a fuction of the chromosome variations in synthesizedDrosophila populationsJ. Comp. Phys. Psy. 52, 722–731.

    Google Scholar 

  • Hirsh J. and Erlenmeyer-Kimling L. 1961 Sign of taxis as a property of the genotype.Science 134, 835–836.

    Article  Google Scholar 

  • Hirsh J. and Erlenmeyer-Kimling L. 1962 Studies in experimental behaviour genetics IV chromosome analysis for geotaxis.J. Comp. Phys. Psy. 55, 732–739.

    Article  Google Scholar 

  • Hirsh J. and Ksander G. 1969 Studies in experimental behaviour genetics V. Negative geotaxis and further chromosome analysis inDrosophila melanogaster.J. Comp. Phy. Psy. 67, 118–122.

    Article  Google Scholar 

  • Hirsh J. and Tryon R. C. 1956 Mass screening and reliable measurement in the experimental behaviour genetics of lower organisms.Psy. Bull. 53, 402–410.

    Article  Google Scholar 

  • Honyk T. and Sheppard D. E. 1977 Behavioural mutants ofDrosophila melanogaster I Isolation and mapping of mutations, which decreases flight ability.Genetics,87, 95–104.

    Google Scholar 

  • Honyk T., Szidonya J. and Suzuki. D. T. 1980 Behavioural mutants ofDrosophila melanogaster III Isolation and mapping of mutations by direct visual observations of behavioural phenotypes.Molec. Gen. Genet. 177, 553–565.

    Google Scholar 

  • Hutter P. 1986 Relationship between light dependent fitness ofDrosophila melanogaster andDrosophila simulans and their genotype for pupation site preference.Genetica 70, 23–25.

    Article  Google Scholar 

  • Iliadi K. G., Iliadi N. N., Rashkovetsky E. L., Girin S. V., Novo E. and Korol A. B. 2002 Sexual differencs for emigration behaviour in natural populations ofDrosophila melanogaster Behav.Genet. 32, 173–180.

    Google Scholar 

  • Imamura M., Haino-Fukushima K., Aigaki T. and Fuyama Y. 1998 Ovulation stimulating substances inDrosophila biarmipes males: their origin, genetic variation in the response of females, and molecular characterization.Ins. Biochem. Mol. Bio. 28, 365–372.

    Article  CAS  Google Scholar 

  • Inoue S., Shimoda M., Nishinokulei I., Siomi M. C., Okammura M., Nakamura A., Kobayashi S., Ishida N. and Siomi H. 2002 A role for the Drosophila fragile X-related gene in circadian output.Curr. Bio. 12, 1331–1335.

    Article  CAS  Google Scholar 

  • Iwasaki K. and Thomas J. H. 1997 Genetics in rhythm.TIG 13, 11–115.

    Google Scholar 

  • Iyengar B., Poote J. and Compos A. R. 1999 Thetamas gene identified as a mutation that disrupts larval behaviour inDrosophila melanogaster codes for the mitochondrial DNA polymerase catalytic subunit (DNA pol-y125).Genetics 153, 1809–1824.

    PubMed  CAS  Google Scholar 

  • Izquierdo J. I. 1991 How doesDrosophila melanogaster overwriter?Ento. Exp. Appl. 59 51–58.

    Article  Google Scholar 

  • Jaenike J. 1982 Environmental modification of oviposition Behaviour inDrosophila.Amer. Natur. 119, 784–802.

    Article  Google Scholar 

  • Jaenike J. 1987 Genetics of oviposition site preference inDrsophila tripunctata.Heredity 59, 363–369.

    Article  PubMed  Google Scholar 

  • Kamping A. and Van Delden W. 1990 Genetic variation for oviposition behaviour inDrosophila melanogaster. I Quantitative genetic analysis of insertion behaviour.Behav. Genet. 20, 616–673.

    Article  Google Scholar 

  • Kaplan W. D. 1977 iav: inactive.Dros. Inf. Serv. 52, 1.

    Google Scholar 

  • Kernan M., Cowan D. and Zuker C. 1994 Genetic dissection of mechanosensory transduction: mechanoreception-difective mutations ofDrosophila.Neuron 12, 1195–1206.

    Article  PubMed  CAS  Google Scholar 

  • Kimura M. T. 1984 Geographic variation of reproductive dispause in theDrosophil auraria complex (Diptera: Drosophildae).Phys. Ento. 9, 425–431.

    Article  Google Scholar 

  • Kimura M. T. 1988 Male mating activity and genetic aspects in imaginal diapause ofDrosophila triauraria.Ento. Exp. Appl. 47, 81–88.

    Article  Google Scholar 

  • Kimura M. T. and Yoshida T. 1995 A genetic analysis of photoperiodic reproductive diapause inDrosophila triauraria.Phys. Entom. 20, 253–256.

    Article  Google Scholar 

  • Kimura M. T., Bessho A. and Dai Z. H. 1993 The influence of gene flow on latitudinal clines of photoperiodic adult diapause in theDrosophila auraia species complex.Biol. J. Linn. Soc. 48, 335–341.

    Article  Google Scholar 

  • Kohler W. 1977 Investigation on the phototactic behaviour ofDrosophila melanogaster. I Selection response in the presence of a multiply marked X-chromosome.Genetica,47, 93–100.

    Article  Google Scholar 

  • Kohler W., Krause J. and Michutta A. 1980 Heritability of phototactic behaviour ofDrosophila.Dros. Inf. Serv. 55, 77–79.

    Google Scholar 

  • Konopka R. and Benzer S. 1971 Clock mutants ofDrosophila melanogaster.Proc. Nat. Acad. Sci. USA. 68, 2112–2116.

    Article  PubMed  CAS  Google Scholar 

  • Korol A. B. and Iliadi K. G. 1994 Increased recombination frequencies resulting from directional selection for geotaxis inDrosophila.Heredity 72, 68–68.

    Article  Google Scholar 

  • Lankinen P. 1986 Genetic correlation between circadian eclosion rhythm and photoperiodic diapause inDrosophile littoralis.J. Biol. Rhy. 1, 101–118.

    Article  CAS  Google Scholar 

  • Lakovaara S., Saura A. Koref-Santibanez S. and Ehrman, L. 1972 Aspects of diapause and its genetics in northernDrosophilids.Heriditas 74, 89–96.

    Google Scholar 

  • Lakovaara S., Lumme J. and Oikarinen A. 1973 Genetics and evolution of diapause in European species of theDrosophila virilis group.Genetics 74, 143.

    Google Scholar 

  • Levintan M. 1951 Experiments on Chromosomal variability inDrosophila robusta.Genetics 36, 285–305.

    Google Scholar 

  • Levene H. and Dobzhansky Th. 1976 Homeostatic drive counteracting selection for positive and negative phototaxis and geotaxis inDrosophila pseudoobscura.Behav. Genet. 6, 327–341.

    Article  PubMed  CAS  Google Scholar 

  • Lumme J. 1978 Phenology and photoperiodic diapause in northern populations ofDrosophila. InEvolution of Insect Migration and Diapause (ed. Dingle H.), Springer-Verlag, New York, pp. 145–170.

    Google Scholar 

  • Lumme J. 1981 Localization of the genetic unit controlling the photoperiodic adult diapause inDrosophila littoralis.Hereditas,94, 241–244.

    Article  Google Scholar 

  • Lumme J. and Keranen L. 1978 Photoperiodic diapause inDrosophila lummei Hackman is controlled by an X-chromosomal factor.Hereditas. 89, 261–262.

    Article  Google Scholar 

  • Lumme J. and Lakovaara S. 1983 Seasonality and diapause in Drosophilids. InGenetics and Biology of Drosophila (ed. M. Ashburner., H. L. Carson and J. N. Thomson. Jr.) Vol. 3, Academic Press, London, pp. 171–220.

    Google Scholar 

  • Lumme J. and Oikariven A. 1977 The genetic basis of the geographically variable photoperiodic diapause inDrosophila littoralis.Hereditas. 86, 129–142.

    Article  Google Scholar 

  • Lumme J., Oipariven A. Lakovaara S. and Alatalo R. 1974 The environmental regulation of adult diapause inDrosophila littoralis.J. Ins. Phy. 20, 2023–2033.

    Article  CAS  Google Scholar 

  • Manning A. and Markow T. A. 1981 Light dependent pupation site preference inDrosophila II. Drosophila melanogaster andDrosophila simulans.Behav.Genet. 11, 557–563.

    Article  PubMed  CAS  Google Scholar 

  • Markow T. A. 1975 A genetic analysis of phototactic behaviour inDrosophila melanogaster. I. Selection in the presence of inversions.Genetics 79, 527–534.

    PubMed  CAS  Google Scholar 

  • Markow T. A. 1979 A survey of intra and inter-specific variation for pupation height inDrosophila.Behav. Genet. 9, 209–217.

    Article  PubMed  CAS  Google Scholar 

  • Markow T. A. and Clark A. G. 1984 Correlated response to phototactic selection.Behav. Genet. 14, 279–293.

    Article  PubMed  CAS  Google Scholar 

  • Markow T. A. and Merriam J. 1977 Phototactic and geotactic behaviour of countercurrent defective mutants ofDrosophila melanogaster.Behav Genet. 7, 447–455.

    Article  PubMed  CAS  Google Scholar 

  • Markow T. A. and Smith W. L. 1977 Genetic analysis of phototactic behaviour inDrosophila simulans Genetics 85, 273–278.

    PubMed  CAS  Google Scholar 

  • Markow T. A. and Smith W. L. 1979 Genetics of photolactic behaviour inDrosophila ananassae, a member of themelanogaster species group.Behav. Genet. 9, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Markow T. A. and Scavanda N. 1977 Effect of age and screening pigment mutants on phototactic behaviour ofD. melanogaster.Behav. Genet. 7, 139–145.

    Article  PubMed  CAS  Google Scholar 

  • Martin J. R., Raabe T. and Hrisenkerg M. 1999 Central complex sub structures are required for the maintenance of locomotor activity inDrosophila melanogaster.J. Comp. Phy. 185, 277–285.

    Article  CAS  Google Scholar 

  • McCabe C. and Birley A. 1998 Oviposition in the period genotypes ofDrosophila melanogaster.Chronobiology 15, 119–133.

    Article  CAS  Google Scholar 

  • McGuire T. R. 1992 A biometrical genetic approach to chromosome analysis inDrosophila: detection of epistatic interactions in geotaxis.Behav. Genet. 22, 453–467.

    Article  PubMed  CAS  Google Scholar 

  • McMillan P. A. and McGuire T. R. 1992 The homeotic gene spineless-aristapedia affects geotaxis inDrosophila melanogaster.Behav. Genet. 22, 557–573.

    Article  PubMed  CAS  Google Scholar 

  • Meehan M. J. and Wilson R. 1987 Locomotor activity in theTyr-1 nutant ofDrosophila melanogaster.Behav. Genet. 17, 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Mikasa K. 1988 Intraspecific variation in the effects of mating on emigration activity and fecundity in a natural population ofDrosophila melanogaster.Genes Genet. Syst. 73, 263–269.

    Article  Google Scholar 

  • Mikasa K. 1990 The genetic study of emigration response behavour ofDrosophila melanogaster in a natural population.Jap. J. Genet. 65, 299–307.

    Article  CAS  Google Scholar 

  • Mikasa K. 1992 Quantitative genetic study on sexual difference in emigration behavour ofDrosophila melanogaster in a natural population.Jap. J. Genet. 67, 463–472.

    Article  Google Scholar 

  • Mikasa K. and Narise T. 1983 Interactive effects of temperature and geography on emigration behaviour ofDrosophila melanogaster: Climatic and Island factors.Behav. Genet. 13, 29–41.

    Article  PubMed  CAS  Google Scholar 

  • Mikasa K. and Narise T. 1986 Genetic variation of temperature influenced emigration behavour ofDrosophila melanogaster in a natural populations.Jap. J. Genet. 61, 233–240.

    Article  Google Scholar 

  • Mikasa K. and Narise T. 1989 Interactive effects of temperature and geography on emigration behaviour and productivity ofDrosophila melanogaster in Northern and Western Japan.J. Art. Sci. Meikai Univ. 1, 1–13.

    Google Scholar 

  • Mikasa K. and Narise T. 1990 Seasonal change in temperature influenced emigration behavoiur ofDrosophila melanogaster in a natural population.J. Art. Sci. Meikai Univ. 2, 1–9.

    Google Scholar 

  • Myers M., Wager-Smith K., Wesley C. S., Young M. W. and Sahgal A. 1995 Positional cloning and sequence analysis of theDrosophila clock genetimeless.Science 270, 805–808.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima-Tanaka E. and Ogaki M. 1970 Chromosomal analysis of jumping behavour to light inDrosophila melanogaster.Dros. Inf. Serv. 45, 109.

    Google Scholar 

  • Nakashima-Tanaka E. and Matsukara K. 1980 The effect of facet number on the jumping behaviour (pyokori) inDrosophila melanogaster.Jap. J. Genet. 55, 275–282.

    Article  Google Scholar 

  • Narise S. and Narise T. 1991 Chemical communication of emigration behaviour ofDrosophila melanogaster II. Identification of chemical substances.J. Genet. 66, 411–420.

    CAS  Google Scholar 

  • O'Dell K. M. C. and Burnet B. 1986 Allelism of the behavioural mutants hypoactive B1 and inactive inDrosophila melanogaster.Dros. Inf. Serv. 63, 107–108.

    Google Scholar 

  • O'Dell K. M. C. and Burnet B. 1988 The effects on locomotor activity and reactivity of the hypoactive and inactive mutations ofDrosophila melanogaster.Heredity 61, 199–207.

    Article  Google Scholar 

  • Ohnishi S. 1977 Oviposition pattern of severalDrosophila species under various light environments.J. Insect Phy. 23 1157–1162.

    Article  CAS  Google Scholar 

  • Oleverio A. 1979 Uses of recombinant inbred lines. InQuantitative genetic variation. J. N. Thompson and J. M. Thoday eds. (New York: Academic Press) pp. 197–218.

    Google Scholar 

  • Ohnishi S. 1979 Relationship between larval feeding behaviour and viability inDrosophila melanogaster andDrosophila simulans.Behav. Genet. 9, 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Oshima C., Inque K. and Choo J. K. 1972 Studies on behaviour genetics. I The selection for both photo-positive and photonegative directions inDrosophila virilis.Environ. Contr. Bio. 10 54–59.

    Google Scholar 

  • Palivanov S. 1975 Response ofDrosophila persimilis to phototactic and geotactic selection.Behav. Genet. 5, 255–267.

    Article  Google Scholar 

  • Park J. H. 2002 Downloading central clock information inDrosophila.Mol. Neurobio. 26, 217–233.

    Article  CAS  Google Scholar 

  • Pereira H. S. and Sokolowski M. B. 1993 Mutations in the larval foraging gene affect adult locomotory behaviour after feeding inDrosophila melanogaster Proc. Nat. Acad. Sci. USA 90, 5044–5046.

    Article  PubMed  CAS  Google Scholar 

  • Peterson G., Hall J. C. and Rosbash M. 1988 The period gene ofDrosophila carries species-specific behavioural instructions.The EMBO Journal 7, 3939–3947.

    Google Scholar 

  • Possidenti B., Mustafa M. and Colins L. 1999 Quantitative genetic variation for oviposition preference with respect to phenylthiocarbamide inDrosophila melanogaster.Behav. Genet. 29, 193–198.

    Article  Google Scholar 

  • Pyle D. W. 1976 Oviposition site preference in strains ofDrosophila melanogaster selected for divergent geotactic maze behaviour.Am. Nat. 110, 181–184.

    Article  Google Scholar 

  • Pyle D. W. 1978 A chromosome substitution analysis of geotactic maze behaviour inDrosophila melanogaster.Behav. Genet. 8, 53–64.

    Article  PubMed  CAS  Google Scholar 

  • Richmond R. C. and Gerking J. L. 1979 Oviposition site preference inDrosophila.Behav. Genet. 9, 233–241.

    Article  PubMed  CAS  Google Scholar 

  • Ricker J. P. and Hirsh J. 1985 Evolution of an instinct under long term divergent selection for geotaxis in domesticated populations ofDrosophila melanogaster.J. Comp. Psy. 99, 380–390.

    Article  CAS  Google Scholar 

  • Ricker J. P. and Hirsh J. 1988a Reversal of genetic homeostasis in laboratory populationsDrosophila melanogaster under long-term selection for geotaxis and estimates of gene correlates: Evolution of behaviour genetic system.J. Comp. Psy. 102, 203–214.

    Article  CAS  Google Scholar 

  • Ricker J. P. and Hirsh J. 1988b Genetic changes occurring over 500 generations in lines ofDrosophila melanogaster selected divergently for geotaxis.Behav. Genet. 18, 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Ringo J. M. and Wood D. 1983 Pupation site selection inDrosophila simulans.Behav. Genet. 13, 17–27.

    Article  PubMed  CAS  Google Scholar 

  • Robertson A. 1966 Artificial selection in plants and animals.Proc. Roy. Soc. London. Series B. 164, 341.

    Article  CAS  Google Scholar 

  • Rodriguez L., Sokolowski M. B. and Shore J. S. 1992 Habitat selection byDrosophila melanogaster larvae.J. Evol. Biol. 5, 61–70.

    Article  Google Scholar 

  • Ruiz-Dubreuil G. and Del Solar E. 1986 Effects of selection on oviposition site preference inDrosophila melanogaster.Aust. J. Bio. Sci. 39, 155–162.

    Google Scholar 

  • Ruiz Dubreuil G. and Del Solar E. 1991 Genetic influences on gregarious oviposition inDrosophila melanogaster.Evol. Bio. 5, 161–171.

    Google Scholar 

  • Ruiz Dubreuil G. and Del Solar E. 1993 A diallel analysis of gregarious ovipositon inDrosophila melanogaster.Heredity 70, 281–284.

    Article  Google Scholar 

  • Ruiz-Dubreuil G. and Kohler N. 1994 Chromosomal analysis of gregarious ovipositon byDrosophila melanogaster.Behav. Genet. 24, 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Dubreuil G., Burnet B. and Connolly K. 1994 Behaviour correlates of selection for oviposition byDrosophila melanogaster females in patchy environment.Heredity 73, 103–110.

    Article  PubMed  Google Scholar 

  • Ruiz-Dubreuil G., Burnet B., Connolly K. and Furness P. 1996 Larval foraging behaviour and competition inDrosophila melanogaster.Heredity 76, 55–64.

    Article  PubMed  Google Scholar 

  • Sakai K. I., Narise T, Hiraizumi Y. and Iyama S. 1958 Studies on competition in plants and animals. IX. Experimental studies on migration inDrosophila melanogaster.Evolution 12, 93–101.

    Article  Google Scholar 

  • Sameoto D. D. and Muller R. S. 1968 Factors controlling the productivity inDrosophila melanogaster andDrosophila simulans.Ecology 47, 695–704.

    Article  Google Scholar 

  • Sarov-Blat L., So W. V., Liu L. and Rosbash M. 2000 TheDrosophila takeout gene is a novel molecular link between circadian rhythms and feeding behaviour.Cell 101, 647–656.

    Article  PubMed  CAS  Google Scholar 

  • Saunders D. S. 1990 The circadian basis of ovarian diapause regulation inDrosophila melanogaster: Is the period gene causally involved in photoperiodic time measurement?J. Bio.Rhy. 5, 315–331.

    Article  CAS  Google Scholar 

  • Saunders D. S., Heinrich V. C. and Gilbert L. I. 1989 Induction of diapause inDrosophila melanogaster. Photo periodic regulation and the impact of arrhythmic clock mutations on time measurement.Proc. Nat. Acad. Sci. USA 86, 3748–3752.

    Article  PubMed  CAS  Google Scholar 

  • Sawin-McCormack E., Sokolowski M. B. and Campos A. R. 1995 Characterisation and genetic analysis ofDrosophila melanogaster photobehaviour during larval development.J. Neuro. 10, 119–135.

    CAS  Google Scholar 

  • Sayeed O. and Benzer S. 1996 Behavioural genetics of thermosensation and hygrosensation inDrosophila.Proc. Nat. Acad. Sci. USA 93, 6079–6084.

    Article  PubMed  CAS  Google Scholar 

  • Sehgal A., Price J. and Young W. 1992 Ontogeny of a biological clock inDrosophila melanogaster.Proc. Nat. Acad. Sci. USA 89, 1423–1427.

    Article  PubMed  CAS  Google Scholar 

  • Seghal A., Rothenfluh-Hilfiker A., Hunter-Ensor M., Chan Y., Myers M. P. and Young M. W. 1995 Rhythmic expression oftimeless: A basis for promoting circadian cycles in period gene autoregulation.Science 270, 808–810.

    Article  Google Scholar 

  • Seiger M. B. and Sanner A. B. 1983 Selection for light preference during oviposition inDrosophila pseudoobscura.Can. J. Genet. Cyto. 25, 446–449.

    CAS  Google Scholar 

  • Seiger M. B. and Seiger L. A. 1979 A comparison of photo responsive in sibling sympatric species ofDrosophila.Am. Nat. 114, 893–901.

    Article  Google Scholar 

  • Sewell D., Burnet B. and Connolly K. 1975 Genetic analysis of larval feeding behaviour inDrosophila melanogaster.Genet. Res. 24, 163–173.

    Google Scholar 

  • Shaver S. A., Riedl C. A., Parker T. L., Sokolowski M. B. and Hilliker A. J. 2000 Isolation of larval behavioural mutants ofDrosophila melanogaster.J. Neuro. 14, 193–205.

    CAS  Google Scholar 

  • Singh B. N. and Pandey M. 1991 Intra and interspecies variations in pupation height inDrosophila.Ind. J. Exp. Bio. 29, 926–929.

    CAS  Google Scholar 

  • Singh B. N. and Pandey M. 1993a Selection for high and low pupation height inDrosophila ananassae.Behav. Genet. 23, 239–243.

    Article  PubMed  CAS  Google Scholar 

  • Singh B. N. and Pandey M. 1993b Evidence for additive polygenic control of pupation height inDrosophila ananassae.Hereditas 119, 111–116.

    Article  PubMed  CAS  Google Scholar 

  • Sokal R. R., Hunter P. and Schlager G. 1960 Some factors affecting pupation site ofDrosophila.Annu. Ento. Soc. America 53, 174–182.

    Google Scholar 

  • Sokolowski M. B. 1980 Foraging strategies ofDrosophila melanogaster: A chromosomal analysis.Behav. Genet. 10, 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski M. B. 1982 Rover and sitter larval foraging patterns in a natural population ofDrosophila melanogaster.Dros. Inf. Serv. 58, 130–139.

    Google Scholar 

  • Sokolowski M. B. and Bauer S. J. 1989 Genetic analysis of pupation distance inDrosophila melanogaster.Heredity 62, 177–183.

    Article  PubMed  Google Scholar 

  • Sokolowski M. B. and Hansell R. I. C. 1983 Elucidating the behavioural phenotypes ofDrosophila melanogaster larvae: Correlation between larval foraging strategies and pupation height.Behav. Genet. 13, 267–280.

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski M. B. and Hansell K. P. 1992 The foraging locus: behavioural tests for normal muscle movements in rover and sitterDrosophila melanogaster larvae.Genetica 85, 205–209.

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski M. B., Bauer S. J., Wai-Ping V., Rodriguez L., Wong J. L. and Kent C. 1986 Ecological genetics and behaviour ofDrosophila melanogaster larvae in nature.Anim. Behav. 34, 403–408.

    Article  Google Scholar 

  • Sokolowski M. B., Sofia-Pereira H. and Hughes K. 1997 Evolution of foraging behaviour inDrosophila by density dependent selection.Proc. Nat. Acad. Sci. USA 94, 7373–7377.

    Article  PubMed  CAS  Google Scholar 

  • Spickett S. G. and Thoday J. M. 1966 Regular responses to selection. 3. Interaction between located polygenes.Genet. Res. 7, 96–121.

    Article  PubMed  CAS  Google Scholar 

  • Spieth H. T. and Ringo J. N. 1983 Mating behaviour and sexual isolation inDrosophila. InThe genetics and biology of Drosophila (ed. M. Ashburner, H. L. Carson and J. N. Thompson) (London: Academic Press). pp. 223–284.

    Google Scholar 

  • Srivastava T. and Singh B. N. 1996 Bidirectional selection for choice of oviposition site inDrosophila ananassae.Kor. J. Genet. 18, 295–300.

    Google Scholar 

  • Stanewsky R. 2003 Genetic analysis of the circadian system inDrosophila melanogaster and mammals.J. Neurobio. 54, 111–147.

    Article  CAS  Google Scholar 

  • Stoltenberg S. F. and Hirsh J. 1997 Y Chromosome effects onDrosophila geotaxis interact with genetic or cytoplasmic background.Anim. Behav. 53, 853–864.

    Article  PubMed  CAS  Google Scholar 

  • Strauss R. and Heisenberg M. 1993 A higher control center of locomotor behaviour in theDrosophila brain.J. Neuro. 13, 1852–1861.

    CAS  Google Scholar 

  • Subramanian P. and Lakhotia S. C. 1999 Molecular rhythms that regulate rhythm genes inDrosophila.Curr. Sci. 77, 1165–1169.

    CAS  Google Scholar 

  • Subramanian P., Balamurugan E. and Suthakar G. 2003 Circadian clock genes inDrosophila: Recent developments.Indian J. Exp. Biol. 41, 797–804.

    PubMed  CAS  Google Scholar 

  • Takamura T. 1980 Behaviour genetics of choice of oviposition site inDrosophila melanogaster II. Analysis of natural populations.Jap. J. Genet. 55, 91–97.

    Article  Google Scholar 

  • Takamura T. 1984 Behaviour genetics of choice of oviposition site inDrosophila melanogaster. IV. Differentiation of oviposition force in themelanogaster species sub groups.Jap. J. Genet. 59, 71–81.

    Article  Google Scholar 

  • Takamura T. and Fuyama Y. 1980 Behaviour genetics of choice of oviposition site inDrosophila melanogater. I. Genetic variability and analysis of behaviour.Behav. Genet. 10, 105–120.

    Article  PubMed  CAS  Google Scholar 

  • Tantawy A. O., Mourad A. M. and Abou-Youssef A. A. 1975 Studies on natural populations ofDrosophila XVI. Migration inDrosophila melanogaster in relation to genotype, temperature and population density.Egyp. J. Genet. Cyto. 4, 262–273.

    Google Scholar 

  • Tauber M. J., Tauber C. A. and Masaki S. 1986Seasonal Adaptations of Insects. Oxford University Press, New York.

    Google Scholar 

  • Taylor C. E. 1976 Genetic variation in heterogeneous environments.Genetics 83, 887–894.

    PubMed  CAS  Google Scholar 

  • Thoday J. M. and Thompson Jr. J. N. 1976 The number of segregating genes implied by continuous variation.Genetica 46, 335–344.

    Article  Google Scholar 

  • Thomas J. B. 1980 Mutations affecting the giant fibre system ofDrosophila.Neurosci Abstr. 6, 742.

    Google Scholar 

  • Thomas J. B. and Wyman R. J. 1982 A mutation inDrosophila alters normal connectivity between two identical neurons.Nature 298, 650–651.

    Article  PubMed  CAS  Google Scholar 

  • Toma D. P., White K. P., Hirsh J. and Greenspan R. J. 2002 Identification of genes involved inDrosophila melanogaster geotaxis, a complex behavioural trait.Nat. Genet. 31, 349–353.

    PubMed  CAS  Google Scholar 

  • Tuncliff G., Rick J. T. and Connolly K. 1969. Locomotor activity inDrosophila. II. A comparative biochemical study of selectively bred populations.J. Comp. Biochem. Phy. 29, 1239–1245.

    Article  Google Scholar 

  • Van Delden W. and Kamping A. 1990 Genetic variation for oviposition behaviour inDrosophila melanogaster. II. Oviposition preference and differential survival.Behav. Genet. 20, 661–673.

    Article  PubMed  Google Scholar 

  • Van Dijken F. R. 1982 Genetic aspects of locomotor activity of the fruitflyDrosophila melanogaster. Unpublished Doctoral Thesis, Rijksuniversiteit to Utrecht.

  • Van Dijken F. R. and Scharloo W. 1979a Divergent selection on locomotor activity inDrosophila melanogaster. I. Selection response.Behav. Genet. 9, 543–553.

    Article  PubMed  Google Scholar 

  • Van Dijken F. R. and Scharloo W. 1979b Divergant selection on locomotor activity inDrosophila melanogaster. II Test for reproductive isolation between selected lines.Behav. Genet. 9, 555–570.

    Article  PubMed  Google Scholar 

  • Vernam C. J., Strauss R., Belle J. S. and Sokolowski M. B. 1996 Larval behaviour ofDrosophila control complex mutants. Interactions between no bridge, foraging and chaser.J. Neurogen. 11, 99–115.

    Article  Google Scholar 

  • Vaj E. and Jayakar S. D. 1976 Genetic studies on locomotor activity inDrosophila.Atti. Ass. Genet. It. 21, 208–210.

    Google Scholar 

  • Wallace B. 1974 Studies on intra and interspecific competition inDrosophila.Ecology,55, 227–244.

    Article  Google Scholar 

  • Walton P. D. 1968 The genetics of geotaxis inDrosophila melanogaster.J. Comp. Phys. Psy. 65, 186–190.

    Article  CAS  Google Scholar 

  • Walton P. D. 1970 The genetics of Phototaxis inDrosophila.Can. J. Genet. Cyto. 12, 283–287.

    Google Scholar 

  • Watabe H. 1995 Genetic analyses of the photoperiodic diapause ofDrosophila lumme Hackman (1972) (Diptera Drosophilidae).J. Hokk. Univ. Edu. 45, 1–6.

    Google Scholar 

  • Watanabe T. K. and Anderson W. W. 1976 Selection for geotaxis inDrosophila melanogaster: Heritability, degree of dominance and correlated responses to selection.Behav. Genet. 6, 71–86.

    Article  PubMed  CAS  Google Scholar 

  • Williams K. D. and Sokolowski M. B. 1993 Diapause inDrosophila melanogaster females: a genetic analysis.Heredity 71, 312–317.

    Article  PubMed  Google Scholar 

  • Woolf C. M. 1972 Genetic analysis of geotactic and phototactic behaviour in selected strains ofDrosophila pseudoobscura.Behav. Genet. 2, 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Woolf C. M., Sasmor H. M. and Markow T. A. 1978 Positive and negative geotaxis: Sex-linked traits inDrosophila pseudoobscura.Behav. Genet. 8, 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Zuker C. S., Cowman A. F. and Rubin G. M. 1985 Isolation and structure of arhodopsin gene fromDrosophila melanogaster.Cell 40, 851–858.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sisodia, S., Singh, B.N. Behaviour genetics ofDrosophila: Non-sexual behaviour. J Genet 84, 195–216 (2005). https://doi.org/10.1007/BF02715846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715846

Keywords

Navigation