Journal of Genetics

, Volume 84, Issue 2, pp 195–216 | Cite as

Behaviour genetics ofDrosophila: Non-sexual behaviour

  • Seema Sisodia
  • B. N. Singh
Review Article


The analysis of genetic behaviour within and between species provides important clues about the forces shaping the evolution of behavioural genes. Genes can affect natural behavioural variation in different ways. Allelic variation causes alternative behavioural phenotypes, whereas changes in gene expression can influence the initiation of behaviour at different ages. Identifying the genes involved in polygenic traits has been difficult. Chromosomal analysis has been widely used as a first step in elucidating the genetic architecture of several behaviours ofDrosophila. Behavioural genetic and molecular studies helped to reveal the genetic basis of circadian time keeping and rhythmic behaviours. InDrosophila, a number of key processes such as emergence from the pupal case, locomotor activity, feeding, olfaction and aspects of mating behaviour are under circadian regulation. Evolutionary biology considers migration behaviour as central in genetic structure of populations and speciation. Genetic loci that influence behaviour are often difficult to identify and localise in part due to the quantitative nature of behavioural phenotypes. Diapause is a hormonally mediated delayed response to future adverse conditions and can occur at any stage of development in an insect. Diapauseassociated gene expression was studied inDrosophila using subtractive hybridisation. Several approaches have been made to unravel the genetic complexity of the behaviour, which have provided information that may be useful in different ways. There is evidence that species do differ in genetic architecture of photoresponse and this may be related to their natural environment. The classical experiments by Jerry Hirsh and Th. Dobzhansky to know the nature of genetic basis for extreme selected geotactic behaviour in fruit flies constituted the first attempt at the genetic dissection of a complex, polygenic behaviour. Understanding the genetic differences between these selected lines would provide an important point of entry into the study of genetic mechanisms of sensing and responding to gravity, as well as clues to the origins of genetic flexibility and plasticity in an organism’s response.


Drosophila genetics non-sexual behaviour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akten B., Jauch E., Genova G. K., Kim E. Y., Edery I., Raabe T. and Jackson F. R. 2003 A role for CK2 in theDrosophila circadian oscillator.Nature Neuro. 6, 208–210.CrossRefGoogle Scholar
  2. Albornoz J. and Dominguez A. 1987 Genetic analysis ofDrosophila melanogaster egg insertion behaviour.Behav. Genet. 17, 257–262.PubMedCrossRefGoogle Scholar
  3. Allada R. 2003 Circadian clocks: a tale of two feed back loops.Cell 112, 284–286.PubMedCrossRefGoogle Scholar
  4. Allemand R. 1991 Chromosomal analysis of the circadian oviposition behaviour in selected lines ofDrosophila melanogaster.Drosophila Inf. Serv. 70, 23–24.Google Scholar
  5. Allemand R. and David J. R. 1984 Genetic analysis of the circadian oviposition rhythm inDrosophila melanogaster: Effects of drifts in laboratory strains.Behav. Genet. 14, 31–34.PubMedCrossRefGoogle Scholar
  6. Alt S., Ringo J., Talyn B., Bray W. and Dowse H. 1998 The period gene controls courtship song cycles inDrosophila melanogaster.Anim. Behav. 56, 87–97.PubMedCrossRefGoogle Scholar
  7. Amlou M., Moreteau B. and David J. R. 1998 Larval tolerance in theDrosophila melanogaster species complex toward the two toxic acids of theDrosophila sechellia host plant.Hereditas 129, 7–14.PubMedCrossRefGoogle Scholar
  8. Andersson A. 1986 Genetic influence on foraging behaviour inDrosophila melanogaster larvae.Hereditas 105, 229–231.CrossRefGoogle Scholar
  9. Asada N. 1988 Pyokori-like jumping behaviour in theDrosophila nasuta subgroup.Jap. J. Genet. 63, 295–301.CrossRefGoogle Scholar
  10. Ball E., Ball S. P. and Sparrow J. C. 1985 A mutant affecting larval muscle development inDrosophila melanogaster.Dev. Genet. 6, 77–92.CrossRefGoogle Scholar
  11. Barker J. S. F. and Starmer W. T. 1999 Environmental effects and the genetics of oviposition site preference for natural yeast substrates inDrosophila buzzatii.Hereditas 130, 145–175.PubMedCrossRefGoogle Scholar
  12. Barker J. S. F., Starmer W. T. and Fogleman J. C. 1994 Genotype-specific habitat selection for oviposition sites in the cactophilic speciesDrosophila buzzatii.Heredity 72, 384–395.PubMedCrossRefGoogle Scholar
  13. Basden E. B. 1952 Some Drosophilidae (Diptera) of the British Isles.Ent. Mon. Mag.,88, 200–201.Google Scholar
  14. Basden E. B. 1954a The distribution and biology of Drosophilidae (Diptera) in Scotland including a new species ofDrosophila.Trans Royal Society Edinb. 62, 602–654.Google Scholar
  15. Basden E. B. 1954b Diapause inDrosophila (Diptera: Drosophilidae)Proc. Roy. Ent. Soc. London A29, 114–118.Google Scholar
  16. Bauer S. J. and Sokolowski M. B. 1985 A genetic analysis of path length and pupation height in a natural population ofDrosophila melanogaster.Can. J. Genet. Cytol. 27, 334–340.Google Scholar
  17. Bauer S. J. and Sokolowski M. B. 1988 Autosomal and maternal effects on pupation behaviour inDrosophila melanogaster.Behav. Genet. 18, 81–97.PubMedCrossRefGoogle Scholar
  18. Beck S. D. 1980Insect Photoperiodism, 2nd ed. Academic Press, New York.Google Scholar
  19. Benzer S. 1967 Behavioural mutants ofDrosophila isolated by counter current distribution.Proc. Nat. Acad. Sci. USA 58, 1112–1119.PubMedCrossRefGoogle Scholar
  20. Boynton S. and Tully T. 1992latheo a new gene involved in associative learning and memory inDrosophila melanogaster identified from P element mutagenesis.Genetics 131, 655–672.PubMedGoogle Scholar
  21. Broadhurst P. L. and Jinks J. L. 1974 What genetical architecture can tell us about the natural selection of behavioural traits. InThe genetics of behaviour (ed. J. H. F. Van Abeelen) North-Holland Publ. Co. Amsterdam.Google Scholar
  22. Burnet B., Sewell D. and Bos M. 1977 Genetic analysis of larval feeding behaviour inDrosophila melanogaster. II Growth relations and competition between selected lines.Genet. Res. 30, 149–161.Google Scholar
  23. Burnet B., Burnet L., Connolly K. and Williamson N. 1988 A genetic analysis of locomotor activity inDrosophila melanogaster.Heredity 61, 111–119.CrossRefGoogle Scholar
  24. Buzzati-Traverso A. 1944 Istituto Lombardo di science e lettere,Rendiconti,77, 39–49.Google Scholar
  25. Carpenter F. W. 1905 The reactions of the pomace fly (Drosophila ampelophila Loew) to light, gravity and mechanical stimulation.Amer. Nat. 39, 157–171.CrossRefGoogle Scholar
  26. Carson H. L. 1958 Response to selection under differant conditions of recombination inDrosophila.Cold Spring Harbour Symposium on Quantitative Biology.23, 291–306.Google Scholar
  27. Carson H. L. 1971The ecology of Drosophila Breeding sites. Harold L. Lyon. Arboretum Lecture Number two. University of Hawaii, Honolulu. pp. 127.Google Scholar
  28. Carson H. L. and Stalker H. D. 1948 Reproductive diapause inDrosophila robusta.Proc. Nat. Acad. Sci. USA.34, 124–129.PubMedCrossRefGoogle Scholar
  29. Carson H. L., Hardy D. E., Spieth H. T. and Stone W. S. 1970 The evolutionary biology of the Hawaiian Drosophilidae: InEssays in Evolution and Genetics in Honour of Th. Dobzhansky (ed. M. K. Hecht and W. C. Steere). pp. 437–543. Applition Century-Crofts, New York.Google Scholar
  30. Casares P. and Rubio J. 1984 Competencia interespecifica entre los preadultos deDrosophila melanogaster Drosophila simulans.Medio Ambiente 7, 3–8.Google Scholar
  31. Casares P. and Carracedo M. C. 1986a Genetic variation in pupation height in a population ofDrosophila simulans.Genetica 70, 17–22.CrossRefGoogle Scholar
  32. Casares P. and Carracedo M. C. 1986b Genotype environment interaction for pupation height inD. simulans.Braz. J. Genet. 9, 421–431.Google Scholar
  33. Casares P. and Carracedo M. C. 1986c On selecting for pupation height inDrosophila simulans.Experientia 42, 1289–1291.CrossRefGoogle Scholar
  34. Casares P., Carracedo M. C. and Garcia-Florez L. 1997 Analysis of larval behaviour underlying in pupation height phenotype inDrosophila simulans andD. melanogaster.Genet. Sel. Evol. 29, 589–600.CrossRefGoogle Scholar
  35. Ceriani M. F., Hogenesch J. B., Yanovesky M., Panda D., Straume M. and Kay S. A. 2002 Genome wide expression analysis inDrosophila reveals genes controlling circadian behaviour.J. Neuro. 22, 9305–9319.Google Scholar
  36. Connolly K. 1967 Locomotor activity inDrosophila III A distinction between activity and reactivity.Anim. Behav. 15, 149–152.PubMedCrossRefGoogle Scholar
  37. Cook R. M. 1979 The courtship tracking ofDrosophila melanogaster.Biol. Cyber. 34, 91–106.CrossRefGoogle Scholar
  38. Costa R., Zona A., Osti M. and Jayakar D. 1989 Genetic analysis of adult locomotor activity inDrosophila melanogaster.Heredity 63, 107–117.CrossRefGoogle Scholar
  39. Cyran S. A., Buchsbaern A. M., Reddy K. L., Lin M. C., Glossop N. R., Hardin P. E. Young M. W., Storti R. V. and Blau J. 2003 Vrilla, Pdp1, and d clock form a second feedback loop in theDrosophila circadian clock.Cell.112, 329–341.PubMedCrossRefGoogle Scholar
  40. Danks H. V. 1987Insect Dormancy: An Ecological Perspective Biological Survey of Canada (Terrestrial Arthropods), Ottawa, p. 439.Google Scholar
  41. De Belle, J. S. and Sokolowski M. B. 1987 Heredity of rover/sitter: Alternative forgaing strategies of Drosophila melanogaster larvae.Heredity,59, 73–83.CrossRefGoogle Scholar
  42. De Belle, J. S. and Sokolowski M. B. 1989 Rover/sitter foraging behaviour in Drosphila melanogaster: Genetic localization to chromosome-2L using autosomes.J. Insect. Behav. 2, 291–299.CrossRefGoogle Scholar
  43. De Belle J. S., Hilliker A. J. and Sokolowski M. B. 1989 Genetic localization of forgaing (for) A major gene for larval behaviour inDrosophila melanogaster.Genetics.123, 157–163.PubMedGoogle Scholar
  44. De Jong J. 1982 The influence of dispersal pattern on the evolution of fecundity.Nethr. J. Zool. 32, 1–30.CrossRefGoogle Scholar
  45. De Solar E. 1968 Selection for and against gregariousness in the choice of ovipostion sites byDrosophila pseudoobscura.Genetics,58, 275–282.PubMedGoogle Scholar
  46. De Souza H. M. L., Da Cunha A. B. and Dos Santos E. P. 1970 Adaptive polymorphism of behaviour evolved in laboratory populationsof Drosophila willistoni.Amer. Natur. 104, 175–189.CrossRefGoogle Scholar
  47. Denlinger D. L. Joplin K. H., Flanngan R. D., Tammarielo S. P., Zhang M. L., Yocum G. D. and Lee K. Y. 1995 Diapause specific gene expression. InMolecular mechanisms of Insect metamorphosis and diapause (ed. A. Suzuki, H. Kataoka and S. Matsumoto) (Industrial publishing and consulting Inc. Tokyo.) Pp. 289–297.Google Scholar
  48. Demerec M. 1950 Biology ofDrosophila. Hafner, New York.Google Scholar
  49. Diagana T. T., Thomas U., Prokopenko S. N., Xiao B., Worley P. F. and Thoma J. B. 2002 Mutation ofDrosophila homer disrupts control of locomotor activity and behavioural plasticity.J. Neuro. 22, 428–436.Google Scholar
  50. Dingle H. 1978Evolution of Insect Migration and Diapause. Springer Verlag, New York.Google Scholar
  51. Dobzhansky Th. and Spassky B. 1967 Effects of selection and migration on geotactic and phototactic behaviour ofDrosophila.Proc. Royal Soc. 168, 723–734.Google Scholar
  52. Dobzhansky Th., Pavlovsky O. and Andregg M. 1975 Distribution among the chromosomes ofDrosophila pseudoobscura of the genes governing the response to light.Genetics 81, 357–367.PubMedGoogle Scholar
  53. Dowse H. B.,. Dushay M. S., Hall J. C. and Ringo J. M. 1989 High resolution analysis of locomotor activity rhythm in disconnected, a visual system mutant ofDrosophila melanogaster.Behav. Genet. 19, 529–542.PubMedCrossRefGoogle Scholar
  54. Erlenmayer-Kimling L., Hirsh J. and Weiss J. M. 1962 Studies in experimental behaviour genetics, III Selection and hybridization analysis of individual differences in the sign of geotaxis.J. Comp. Phys. Psych. 53, 722–731.CrossRefGoogle Scholar
  55. Ewing A. W. 1963 Attempts to select for spontaneous activity inDrosophila melanogaster.Anim. Behav. 11, 369–378.CrossRefGoogle Scholar
  56. Falconer D. S. 1981 Introduction to Quantilative Genetics Ed. 2. Longman. New York.Google Scholar
  57. Garcia-Florez L., Casares P. and Carracedo M. C. 1989 Selection for pupation height inDrosophila melanogaster.Genetica 79, 155–160.PubMedCrossRefGoogle Scholar
  58. Gibbs S. M., Becker A., Hardy R. W. and Truman J. W. 2001 Soluble guanylate cyclase is required during development for visual system function inDrosophila.J. Neuro. 21, 7704–7714.Google Scholar
  59. Godoy-Herrera R. 1994 Biometrical analysis of larval digging behaviour inDrosophila melanogaster.Behav. Genet. 24, 427–432.PubMedCrossRefGoogle Scholar
  60. Godoy-Herrera R., Alarcon M., Casares H., Loyda I. Navarrete I. and Vega J. L. 1992 The development of the photoresponse inDrosophila melanogaster larva.Rev. Chilena Hist. Nat. 65, 95–101.Google Scholar
  61. Godoy-Herrera R., Burnet B., Connolly K., Grey D. and Weir I. 1994 Disruption of the structure of larval foraging behaviour in interspecific hybrids inDrosophila.Heredity 72, 260–268.PubMedCrossRefGoogle Scholar
  62. Gonzalez D. 1990 Genetics of factors affecting the life history ofDrosophila melanogaster IV cytoplasmic/maternal factors affect egg insertion behaviour.Behav. Genet. 20, 675–686.PubMedCrossRefGoogle Scholar
  63. Gordesky-Gold B., Warrick J. M., Bixler A., Beasley J. E. and Tompkins L. 1995 Hypomorphic mutations in the larval photokinesis A (lpha) gene have stage-specific effects on visual system function inDrosophila melanogaster.Genetics 139, 1623–1629.PubMedGoogle Scholar
  64. Greenspan R. J. and. Ferveur J. F. 2000 Courtship inDrosophila.Ann. Rev. Genet. 34, 205–232.PubMedCrossRefGoogle Scholar
  65. Grigliatti T. 1986 Mutagenesis InDrosophila: A practical Approach (ed. Roberts D. B.), IRI-Press, Oxford, pp. 31–58.Google Scholar
  66. Grossfield J. 1978 Non sexual behaviour ofDrosophila. InThe Genetics and Biology of Drosophila (ed. M. Ashburner and T. R. F. Wright) (New York: Academic Presss) Vol. 2b pp. 1–126.Google Scholar
  67. Grossfield J. and Sakmi B. 1972 Divergence in the neural control of oviposition inDrosophila.J. Insect Phys. 18, 237–241.CrossRefGoogle Scholar
  68. Hadler N. 1964a Genetic influence on phototaxis inDrosophila melanogaster Biol. Bull. 126, 264–273.CrossRefGoogle Scholar
  69. Hadler N. 1964b Heritability and phototaxis inDrosophila melanogaster Genetics,50, 1269–1277.PubMedGoogle Scholar
  70. Hall J. C. 1982 Genetics of the nervous system inDrosophila.Quart. Rev. Biophy. 15, 223–479.CrossRefGoogle Scholar
  71. Hall J. C. 1985 Genetic analysis of behaviour in insects. InComparative Insect Physiology, Biochemistry and Pharmacology (ed. Kerkut G. A., Gilbert L. I.) (Pergamon Press, Oxford.) pp. 287–373.Google Scholar
  72. Hall J. C. 1995 Molecular mechanisms of bilogical clocks.Tren Neuro. 18, 230–240.CrossRefGoogle Scholar
  73. Hall J. C. and Rosbash M. 1988 Mutation and molecular influencing biological rhythms.Annu. Rev. Neurosci. 11, 373–393.PubMedCrossRefGoogle Scholar
  74. Hayman B. 1954 The analysis of variance of diallel tables.Biometrics 10, 235–244.CrossRefGoogle Scholar
  75. Heisenberg M. 1997 Genetic approach to neuroethologyBioessays 19, 1065–1073.PubMedCrossRefGoogle Scholar
  76. Helfrich-Forster C. 1996Drosophila rhythms: from brain to behaviour.Cell Dev. Biol. 7, 791–802.CrossRefGoogle Scholar
  77. Hirsh J. 1959 Studies in experimental behaviour genetics II. Individual differences in geotaxis as a fuction of the chromosome variations in synthesizedDrosophila populationsJ. Comp. Phys. Psy. 52, 722–731.Google Scholar
  78. Hirsh J. and Erlenmeyer-Kimling L. 1961 Sign of taxis as a property of the genotype.Science 134, 835–836.CrossRefGoogle Scholar
  79. Hirsh J. and Erlenmeyer-Kimling L. 1962 Studies in experimental behaviour genetics IV chromosome analysis for geotaxis.J. Comp. Phys. Psy. 55, 732–739.CrossRefGoogle Scholar
  80. Hirsh J. and Ksander G. 1969 Studies in experimental behaviour genetics V. Negative geotaxis and further chromosome analysis inDrosophila melanogaster.J. Comp. Phy. Psy. 67, 118–122.CrossRefGoogle Scholar
  81. Hirsh J. and Tryon R. C. 1956 Mass screening and reliable measurement in the experimental behaviour genetics of lower organisms.Psy. Bull. 53, 402–410.CrossRefGoogle Scholar
  82. Honyk T. and Sheppard D. E. 1977 Behavioural mutants ofDrosophila melanogaster I Isolation and mapping of mutations, which decreases flight ability.Genetics,87, 95–104.Google Scholar
  83. Honyk T., Szidonya J. and Suzuki. D. T. 1980 Behavioural mutants ofDrosophila melanogaster III Isolation and mapping of mutations by direct visual observations of behavioural phenotypes.Molec. Gen. Genet. 177, 553–565.Google Scholar
  84. Hutter P. 1986 Relationship between light dependent fitness ofDrosophila melanogaster andDrosophila simulans and their genotype for pupation site preference.Genetica 70, 23–25.CrossRefGoogle Scholar
  85. Iliadi K. G., Iliadi N. N., Rashkovetsky E. L., Girin S. V., Novo E. and Korol A. B. 2002 Sexual differencs for emigration behaviour in natural populations ofDrosophila melanogaster Behav.Genet. 32, 173–180.Google Scholar
  86. Imamura M., Haino-Fukushima K., Aigaki T. and Fuyama Y. 1998 Ovulation stimulating substances inDrosophila biarmipes males: their origin, genetic variation in the response of females, and molecular characterization.Ins. Biochem. Mol. Bio. 28, 365–372.CrossRefGoogle Scholar
  87. Inoue S., Shimoda M., Nishinokulei I., Siomi M. C., Okammura M., Nakamura A., Kobayashi S., Ishida N. and Siomi H. 2002 A role for the Drosophila fragile X-related gene in circadian output.Curr. Bio. 12, 1331–1335.CrossRefGoogle Scholar
  88. Iwasaki K. and Thomas J. H. 1997 Genetics in rhythm.TIG 13, 11–115.Google Scholar
  89. Iyengar B., Poote J. and Compos A. R. 1999 Thetamas gene identified as a mutation that disrupts larval behaviour inDrosophila melanogaster codes for the mitochondrial DNA polymerase catalytic subunit (DNA pol-y125).Genetics 153, 1809–1824.PubMedGoogle Scholar
  90. Izquierdo J. I. 1991 How doesDrosophila melanogaster overwriter?Ento. Exp. Appl. 59 51–58.CrossRefGoogle Scholar
  91. Jaenike J. 1982 Environmental modification of oviposition Behaviour inDrosophila.Amer. Natur. 119, 784–802.CrossRefGoogle Scholar
  92. Jaenike J. 1987 Genetics of oviposition site preference inDrsophila tripunctata.Heredity 59, 363–369.PubMedCrossRefGoogle Scholar
  93. Kamping A. and Van Delden W. 1990 Genetic variation for oviposition behaviour inDrosophila melanogaster. I Quantitative genetic analysis of insertion behaviour.Behav. Genet. 20, 616–673.CrossRefGoogle Scholar
  94. Kaplan W. D. 1977 iav: inactive.Dros. Inf. Serv. 52, 1.Google Scholar
  95. Kernan M., Cowan D. and Zuker C. 1994 Genetic dissection of mechanosensory transduction: mechanoreception-difective mutations ofDrosophila.Neuron 12, 1195–1206.PubMedCrossRefGoogle Scholar
  96. Kimura M. T. 1984 Geographic variation of reproductive dispause in theDrosophil auraria complex (Diptera: Drosophildae).Phys. Ento. 9, 425–431.CrossRefGoogle Scholar
  97. Kimura M. T. 1988 Male mating activity and genetic aspects in imaginal diapause ofDrosophila triauraria.Ento. Exp. Appl. 47, 81–88.CrossRefGoogle Scholar
  98. Kimura M. T. and Yoshida T. 1995 A genetic analysis of photoperiodic reproductive diapause inDrosophila triauraria.Phys. Entom. 20, 253–256.CrossRefGoogle Scholar
  99. Kimura M. T., Bessho A. and Dai Z. H. 1993 The influence of gene flow on latitudinal clines of photoperiodic adult diapause in theDrosophila auraia species complex.Biol. J. Linn. Soc. 48, 335–341.CrossRefGoogle Scholar
  100. Kohler W. 1977 Investigation on the phototactic behaviour ofDrosophila melanogaster. I Selection response in the presence of a multiply marked X-chromosome.Genetica,47, 93–100.CrossRefGoogle Scholar
  101. Kohler W., Krause J. and Michutta A. 1980 Heritability of phototactic behaviour ofDrosophila.Dros. Inf. Serv. 55, 77–79.Google Scholar
  102. Konopka R. and Benzer S. 1971 Clock mutants ofDrosophila melanogaster.Proc. Nat. Acad. Sci. USA. 68, 2112–2116.PubMedCrossRefGoogle Scholar
  103. Korol A. B. and Iliadi K. G. 1994 Increased recombination frequencies resulting from directional selection for geotaxis inDrosophila.Heredity 72, 68–68.CrossRefGoogle Scholar
  104. Lankinen P. 1986 Genetic correlation between circadian eclosion rhythm and photoperiodic diapause inDrosophile littoralis.J. Biol. Rhy. 1, 101–118.CrossRefGoogle Scholar
  105. Lakovaara S., Saura A. Koref-Santibanez S. and Ehrman, L. 1972 Aspects of diapause and its genetics in northernDrosophilids.Heriditas 74, 89–96.Google Scholar
  106. Lakovaara S., Lumme J. and Oikarinen A. 1973 Genetics and evolution of diapause in European species of theDrosophila virilis group.Genetics 74, 143.Google Scholar
  107. Levintan M. 1951 Experiments on Chromosomal variability inDrosophila robusta.Genetics 36, 285–305.Google Scholar
  108. Levene H. and Dobzhansky Th. 1976 Homeostatic drive counteracting selection for positive and negative phototaxis and geotaxis inDrosophila pseudoobscura.Behav. Genet. 6, 327–341.PubMedCrossRefGoogle Scholar
  109. Lumme J. 1978 Phenology and photoperiodic diapause in northern populations ofDrosophila. InEvolution of Insect Migration and Diapause (ed. Dingle H.), Springer-Verlag, New York, pp. 145–170.Google Scholar
  110. Lumme J. 1981 Localization of the genetic unit controlling the photoperiodic adult diapause inDrosophila littoralis.Hereditas,94, 241–244.CrossRefGoogle Scholar
  111. Lumme J. and Keranen L. 1978 Photoperiodic diapause inDrosophila lummei Hackman is controlled by an X-chromosomal factor.Hereditas. 89, 261–262.CrossRefGoogle Scholar
  112. Lumme J. and Lakovaara S. 1983 Seasonality and diapause in Drosophilids. InGenetics and Biology of Drosophila (ed. M. Ashburner., H. L. Carson and J. N. Thomson. Jr.) Vol. 3, Academic Press, London, pp. 171–220.Google Scholar
  113. Lumme J. and Oikariven A. 1977 The genetic basis of the geographically variable photoperiodic diapause inDrosophila littoralis.Hereditas. 86, 129–142.CrossRefGoogle Scholar
  114. Lumme J., Oipariven A. Lakovaara S. and Alatalo R. 1974 The environmental regulation of adult diapause inDrosophila littoralis.J. Ins. Phy. 20, 2023–2033.CrossRefGoogle Scholar
  115. Manning A. and Markow T. A. 1981 Light dependent pupation site preference inDrosophila II. Drosophila melanogaster andDrosophila simulans.Behav.Genet. 11, 557–563.PubMedCrossRefGoogle Scholar
  116. Markow T. A. 1975 A genetic analysis of phototactic behaviour inDrosophila melanogaster. I. Selection in the presence of inversions.Genetics 79, 527–534.PubMedGoogle Scholar
  117. Markow T. A. 1979 A survey of intra and inter-specific variation for pupation height inDrosophila.Behav. Genet. 9, 209–217.PubMedCrossRefGoogle Scholar
  118. Markow T. A. and Clark A. G. 1984 Correlated response to phototactic selection.Behav. Genet. 14, 279–293.PubMedCrossRefGoogle Scholar
  119. Markow T. A. and Merriam J. 1977 Phototactic and geotactic behaviour of countercurrent defective mutants ofDrosophila melanogaster.Behav Genet. 7, 447–455.PubMedCrossRefGoogle Scholar
  120. Markow T. A. and Smith W. L. 1977 Genetic analysis of phototactic behaviour inDrosophila simulans Genetics 85, 273–278.PubMedGoogle Scholar
  121. Markow T. A. and Smith W. L. 1979 Genetics of photolactic behaviour inDrosophila ananassae, a member of themelanogaster species group.Behav. Genet. 9, 61–67.PubMedCrossRefGoogle Scholar
  122. Markow T. A. and Scavanda N. 1977 Effect of age and screening pigment mutants on phototactic behaviour ofD. melanogaster.Behav. Genet. 7, 139–145.PubMedCrossRefGoogle Scholar
  123. Martin J. R., Raabe T. and Hrisenkerg M. 1999 Central complex sub structures are required for the maintenance of locomotor activity inDrosophila melanogaster.J. Comp. Phy. 185, 277–285.CrossRefGoogle Scholar
  124. McCabe C. and Birley A. 1998 Oviposition in the period genotypes ofDrosophila melanogaster.Chronobiology 15, 119–133.CrossRefGoogle Scholar
  125. McGuire T. R. 1992 A biometrical genetic approach to chromosome analysis inDrosophila: detection of epistatic interactions in geotaxis.Behav. Genet. 22, 453–467.PubMedCrossRefGoogle Scholar
  126. McMillan P. A. and McGuire T. R. 1992 The homeotic gene spineless-aristapedia affects geotaxis inDrosophila melanogaster.Behav. Genet. 22, 557–573.PubMedCrossRefGoogle Scholar
  127. Meehan M. J. and Wilson R. 1987 Locomotor activity in theTyr-1 nutant ofDrosophila melanogaster.Behav. Genet. 17, 503–512.PubMedCrossRefGoogle Scholar
  128. Mikasa K. 1988 Intraspecific variation in the effects of mating on emigration activity and fecundity in a natural population ofDrosophila melanogaster.Genes Genet. Syst. 73, 263–269.CrossRefGoogle Scholar
  129. Mikasa K. 1990 The genetic study of emigration response behavour ofDrosophila melanogaster in a natural population.Jap. J. Genet. 65, 299–307.CrossRefGoogle Scholar
  130. Mikasa K. 1992 Quantitative genetic study on sexual difference in emigration behavour ofDrosophila melanogaster in a natural population.Jap. J. Genet. 67, 463–472.CrossRefGoogle Scholar
  131. Mikasa K. and Narise T. 1983 Interactive effects of temperature and geography on emigration behaviour ofDrosophila melanogaster: Climatic and Island factors.Behav. Genet. 13, 29–41.PubMedCrossRefGoogle Scholar
  132. Mikasa K. and Narise T. 1986 Genetic variation of temperature influenced emigration behavour ofDrosophila melanogaster in a natural populations.Jap. J. Genet. 61, 233–240.CrossRefGoogle Scholar
  133. Mikasa K. and Narise T. 1989 Interactive effects of temperature and geography on emigration behaviour and productivity ofDrosophila melanogaster in Northern and Western Japan.J. Art. Sci. Meikai Univ. 1, 1–13.Google Scholar
  134. Mikasa K. and Narise T. 1990 Seasonal change in temperature influenced emigration behavoiur ofDrosophila melanogaster in a natural population.J. Art. Sci. Meikai Univ. 2, 1–9.Google Scholar
  135. Myers M., Wager-Smith K., Wesley C. S., Young M. W. and Sahgal A. 1995 Positional cloning and sequence analysis of theDrosophila clock genetimeless.Science 270, 805–808.PubMedCrossRefGoogle Scholar
  136. Nakashima-Tanaka E. and Ogaki M. 1970 Chromosomal analysis of jumping behavour to light inDrosophila melanogaster.Dros. Inf. Serv. 45, 109.Google Scholar
  137. Nakashima-Tanaka E. and Matsukara K. 1980 The effect of facet number on the jumping behaviour (pyokori) inDrosophila melanogaster.Jap. J. Genet. 55, 275–282.CrossRefGoogle Scholar
  138. Narise S. and Narise T. 1991 Chemical communication of emigration behaviour ofDrosophila melanogaster II. Identification of chemical substances.J. Genet. 66, 411–420.Google Scholar
  139. O'Dell K. M. C. and Burnet B. 1986 Allelism of the behavioural mutants hypoactive B1 and inactive inDrosophila melanogaster.Dros. Inf. Serv. 63, 107–108.Google Scholar
  140. O'Dell K. M. C. and Burnet B. 1988 The effects on locomotor activity and reactivity of the hypoactive and inactive mutations ofDrosophila melanogaster.Heredity 61, 199–207.CrossRefGoogle Scholar
  141. Ohnishi S. 1977 Oviposition pattern of severalDrosophila species under various light environments.J. Insect Phy. 23 1157–1162.CrossRefGoogle Scholar
  142. Oleverio A. 1979 Uses of recombinant inbred lines. InQuantitative genetic variation. J. N. Thompson and J. M. Thoday eds. (New York: Academic Press) pp. 197–218.Google Scholar
  143. Ohnishi S. 1979 Relationship between larval feeding behaviour and viability inDrosophila melanogaster andDrosophila simulans.Behav. Genet. 9, 129–134.PubMedCrossRefGoogle Scholar
  144. Oshima C., Inque K. and Choo J. K. 1972 Studies on behaviour genetics. I The selection for both photo-positive and photonegative directions inDrosophila virilis.Environ. Contr. Bio. 10 54–59.Google Scholar
  145. Palivanov S. 1975 Response ofDrosophila persimilis to phototactic and geotactic selection.Behav. Genet. 5, 255–267.CrossRefGoogle Scholar
  146. Park J. H. 2002 Downloading central clock information inDrosophila.Mol. Neurobio. 26, 217–233.CrossRefGoogle Scholar
  147. Pereira H. S. and Sokolowski M. B. 1993 Mutations in the larval foraging gene affect adult locomotory behaviour after feeding inDrosophila melanogaster Proc. Nat. Acad. Sci. USA 90, 5044–5046.PubMedCrossRefGoogle Scholar
  148. Peterson G., Hall J. C. and Rosbash M. 1988 The period gene ofDrosophila carries species-specific behavioural instructions.The EMBO Journal 7, 3939–3947.Google Scholar
  149. Possidenti B., Mustafa M. and Colins L. 1999 Quantitative genetic variation for oviposition preference with respect to phenylthiocarbamide inDrosophila melanogaster.Behav. Genet. 29, 193–198.CrossRefGoogle Scholar
  150. Pyle D. W. 1976 Oviposition site preference in strains ofDrosophila melanogaster selected for divergent geotactic maze behaviour.Am. Nat. 110, 181–184.CrossRefGoogle Scholar
  151. Pyle D. W. 1978 A chromosome substitution analysis of geotactic maze behaviour inDrosophila melanogaster.Behav. Genet. 8, 53–64.PubMedCrossRefGoogle Scholar
  152. Richmond R. C. and Gerking J. L. 1979 Oviposition site preference inDrosophila.Behav. Genet. 9, 233–241.PubMedCrossRefGoogle Scholar
  153. Ricker J. P. and Hirsh J. 1985 Evolution of an instinct under long term divergent selection for geotaxis in domesticated populations ofDrosophila melanogaster.J. Comp. Psy. 99, 380–390.CrossRefGoogle Scholar
  154. Ricker J. P. and Hirsh J. 1988a Reversal of genetic homeostasis in laboratory populationsDrosophila melanogaster under long-term selection for geotaxis and estimates of gene correlates: Evolution of behaviour genetic system.J. Comp. Psy. 102, 203–214.CrossRefGoogle Scholar
  155. Ricker J. P. and Hirsh J. 1988b Genetic changes occurring over 500 generations in lines ofDrosophila melanogaster selected divergently for geotaxis.Behav. Genet. 18, 13–25.PubMedCrossRefGoogle Scholar
  156. Ringo J. M. and Wood D. 1983 Pupation site selection inDrosophila simulans.Behav. Genet. 13, 17–27.PubMedCrossRefGoogle Scholar
  157. Robertson A. 1966 Artificial selection in plants and animals.Proc. Roy. Soc. London. Series B. 164, 341.CrossRefGoogle Scholar
  158. Rodriguez L., Sokolowski M. B. and Shore J. S. 1992 Habitat selection byDrosophila melanogaster larvae.J. Evol. Biol. 5, 61–70.CrossRefGoogle Scholar
  159. Ruiz-Dubreuil G. and Del Solar E. 1986 Effects of selection on oviposition site preference inDrosophila melanogaster.Aust. J. Bio. Sci. 39, 155–162.Google Scholar
  160. Ruiz Dubreuil G. and Del Solar E. 1991 Genetic influences on gregarious oviposition inDrosophila melanogaster.Evol. Bio. 5, 161–171.Google Scholar
  161. Ruiz Dubreuil G. and Del Solar E. 1993 A diallel analysis of gregarious ovipositon inDrosophila melanogaster.Heredity 70, 281–284.CrossRefGoogle Scholar
  162. Ruiz-Dubreuil G. and Kohler N. 1994 Chromosomal analysis of gregarious ovipositon byDrosophila melanogaster.Behav. Genet. 24, 187–190.PubMedCrossRefGoogle Scholar
  163. Ruiz-Dubreuil G., Burnet B. and Connolly K. 1994 Behaviour correlates of selection for oviposition byDrosophila melanogaster females in patchy environment.Heredity 73, 103–110.PubMedCrossRefGoogle Scholar
  164. Ruiz-Dubreuil G., Burnet B., Connolly K. and Furness P. 1996 Larval foraging behaviour and competition inDrosophila melanogaster.Heredity 76, 55–64.PubMedCrossRefGoogle Scholar
  165. Sakai K. I., Narise T, Hiraizumi Y. and Iyama S. 1958 Studies on competition in plants and animals. IX. Experimental studies on migration inDrosophila melanogaster.Evolution 12, 93–101.CrossRefGoogle Scholar
  166. Sameoto D. D. and Muller R. S. 1968 Factors controlling the productivity inDrosophila melanogaster andDrosophila simulans.Ecology 47, 695–704.CrossRefGoogle Scholar
  167. Sarov-Blat L., So W. V., Liu L. and Rosbash M. 2000 TheDrosophila takeout gene is a novel molecular link between circadian rhythms and feeding behaviour.Cell 101, 647–656.PubMedCrossRefGoogle Scholar
  168. Saunders D. S. 1990 The circadian basis of ovarian diapause regulation inDrosophila melanogaster: Is the period gene causally involved in photoperiodic time measurement?J. Bio.Rhy. 5, 315–331.CrossRefGoogle Scholar
  169. Saunders D. S., Heinrich V. C. and Gilbert L. I. 1989 Induction of diapause inDrosophila melanogaster. Photo periodic regulation and the impact of arrhythmic clock mutations on time measurement.Proc. Nat. Acad. Sci. USA 86, 3748–3752.PubMedCrossRefGoogle Scholar
  170. Sawin-McCormack E., Sokolowski M. B. and Campos A. R. 1995 Characterisation and genetic analysis ofDrosophila melanogaster photobehaviour during larval development.J. Neuro. 10, 119–135.Google Scholar
  171. Sayeed O. and Benzer S. 1996 Behavioural genetics of thermosensation and hygrosensation inDrosophila.Proc. Nat. Acad. Sci. USA 93, 6079–6084.PubMedCrossRefGoogle Scholar
  172. Sehgal A., Price J. and Young W. 1992 Ontogeny of a biological clock inDrosophila melanogaster.Proc. Nat. Acad. Sci. USA 89, 1423–1427.PubMedCrossRefGoogle Scholar
  173. Seghal A., Rothenfluh-Hilfiker A., Hunter-Ensor M., Chan Y., Myers M. P. and Young M. W. 1995 Rhythmic expression oftimeless: A basis for promoting circadian cycles in period gene autoregulation.Science 270, 808–810.CrossRefGoogle Scholar
  174. Seiger M. B. and Sanner A. B. 1983 Selection for light preference during oviposition inDrosophila pseudoobscura.Can. J. Genet. Cyto. 25, 446–449.Google Scholar
  175. Seiger M. B. and Seiger L. A. 1979 A comparison of photo responsive in sibling sympatric species ofDrosophila.Am. Nat. 114, 893–901.CrossRefGoogle Scholar
  176. Sewell D., Burnet B. and Connolly K. 1975 Genetic analysis of larval feeding behaviour inDrosophila melanogaster.Genet. Res. 24, 163–173.Google Scholar
  177. Shaver S. A., Riedl C. A., Parker T. L., Sokolowski M. B. and Hilliker A. J. 2000 Isolation of larval behavioural mutants ofDrosophila melanogaster.J. Neuro. 14, 193–205.Google Scholar
  178. Singh B. N. and Pandey M. 1991 Intra and interspecies variations in pupation height inDrosophila.Ind. J. Exp. Bio. 29, 926–929.Google Scholar
  179. Singh B. N. and Pandey M. 1993a Selection for high and low pupation height inDrosophila ananassae.Behav. Genet. 23, 239–243.PubMedCrossRefGoogle Scholar
  180. Singh B. N. and Pandey M. 1993b Evidence for additive polygenic control of pupation height inDrosophila ananassae.Hereditas 119, 111–116.PubMedCrossRefGoogle Scholar
  181. Sokal R. R., Hunter P. and Schlager G. 1960 Some factors affecting pupation site ofDrosophila.Annu. Ento. Soc. America 53, 174–182.Google Scholar
  182. Sokolowski M. B. 1980 Foraging strategies ofDrosophila melanogaster: A chromosomal analysis.Behav. Genet. 10, 291–302.PubMedCrossRefGoogle Scholar
  183. Sokolowski M. B. 1982 Rover and sitter larval foraging patterns in a natural population ofDrosophila melanogaster.Dros. Inf. Serv. 58, 130–139.Google Scholar
  184. Sokolowski M. B. and Bauer S. J. 1989 Genetic analysis of pupation distance inDrosophila melanogaster.Heredity 62, 177–183.PubMedCrossRefGoogle Scholar
  185. Sokolowski M. B. and Hansell R. I. C. 1983 Elucidating the behavioural phenotypes ofDrosophila melanogaster larvae: Correlation between larval foraging strategies and pupation height.Behav. Genet. 13, 267–280.PubMedCrossRefGoogle Scholar
  186. Sokolowski M. B. and Hansell K. P. 1992 The foraging locus: behavioural tests for normal muscle movements in rover and sitterDrosophila melanogaster larvae.Genetica 85, 205–209.PubMedCrossRefGoogle Scholar
  187. Sokolowski M. B., Bauer S. J., Wai-Ping V., Rodriguez L., Wong J. L. and Kent C. 1986 Ecological genetics and behaviour ofDrosophila melanogaster larvae in nature.Anim. Behav. 34, 403–408.CrossRefGoogle Scholar
  188. Sokolowski M. B., Sofia-Pereira H. and Hughes K. 1997 Evolution of foraging behaviour inDrosophila by density dependent selection.Proc. Nat. Acad. Sci. USA 94, 7373–7377.PubMedCrossRefGoogle Scholar
  189. Spickett S. G. and Thoday J. M. 1966 Regular responses to selection. 3. Interaction between located polygenes.Genet. Res. 7, 96–121.PubMedCrossRefGoogle Scholar
  190. Spieth H. T. and Ringo J. N. 1983 Mating behaviour and sexual isolation inDrosophila. InThe genetics and biology of Drosophila (ed. M. Ashburner, H. L. Carson and J. N. Thompson) (London: Academic Press). pp. 223–284.Google Scholar
  191. Srivastava T. and Singh B. N. 1996 Bidirectional selection for choice of oviposition site inDrosophila ananassae.Kor. J. Genet. 18, 295–300.Google Scholar
  192. Stanewsky R. 2003 Genetic analysis of the circadian system inDrosophila melanogaster and mammals.J. Neurobio. 54, 111–147.CrossRefGoogle Scholar
  193. Stoltenberg S. F. and Hirsh J. 1997 Y Chromosome effects onDrosophila geotaxis interact with genetic or cytoplasmic background.Anim. Behav. 53, 853–864.PubMedCrossRefGoogle Scholar
  194. Strauss R. and Heisenberg M. 1993 A higher control center of locomotor behaviour in theDrosophila brain.J. Neuro. 13, 1852–1861.Google Scholar
  195. Subramanian P. and Lakhotia S. C. 1999 Molecular rhythms that regulate rhythm genes inDrosophila.Curr. Sci. 77, 1165–1169.Google Scholar
  196. Subramanian P., Balamurugan E. and Suthakar G. 2003 Circadian clock genes inDrosophila: Recent developments.Indian J. Exp. Biol. 41, 797–804.PubMedGoogle Scholar
  197. Takamura T. 1980 Behaviour genetics of choice of oviposition site inDrosophila melanogaster II. Analysis of natural populations.Jap. J. Genet. 55, 91–97.CrossRefGoogle Scholar
  198. Takamura T. 1984 Behaviour genetics of choice of oviposition site inDrosophila melanogaster. IV. Differentiation of oviposition force in themelanogaster species sub groups.Jap. J. Genet. 59, 71–81.CrossRefGoogle Scholar
  199. Takamura T. and Fuyama Y. 1980 Behaviour genetics of choice of oviposition site inDrosophila melanogater. I. Genetic variability and analysis of behaviour.Behav. Genet. 10, 105–120.PubMedCrossRefGoogle Scholar
  200. Tantawy A. O., Mourad A. M. and Abou-Youssef A. A. 1975 Studies on natural populations ofDrosophila XVI. Migration inDrosophila melanogaster in relation to genotype, temperature and population density.Egyp. J. Genet. Cyto. 4, 262–273.Google Scholar
  201. Tauber M. J., Tauber C. A. and Masaki S. 1986Seasonal Adaptations of Insects. Oxford University Press, New York.Google Scholar
  202. Taylor C. E. 1976 Genetic variation in heterogeneous environments.Genetics 83, 887–894.PubMedGoogle Scholar
  203. Thoday J. M. and Thompson Jr. J. N. 1976 The number of segregating genes implied by continuous variation.Genetica 46, 335–344.CrossRefGoogle Scholar
  204. Thomas J. B. 1980 Mutations affecting the giant fibre system ofDrosophila.Neurosci Abstr. 6, 742.Google Scholar
  205. Thomas J. B. and Wyman R. J. 1982 A mutation inDrosophila alters normal connectivity between two identical neurons.Nature 298, 650–651.PubMedCrossRefGoogle Scholar
  206. Toma D. P., White K. P., Hirsh J. and Greenspan R. J. 2002 Identification of genes involved inDrosophila melanogaster geotaxis, a complex behavioural trait.Nat. Genet. 31, 349–353.PubMedGoogle Scholar
  207. Tuncliff G., Rick J. T. and Connolly K. 1969. Locomotor activity inDrosophila. II. A comparative biochemical study of selectively bred populations.J. Comp. Biochem. Phy. 29, 1239–1245.CrossRefGoogle Scholar
  208. Van Delden W. and Kamping A. 1990 Genetic variation for oviposition behaviour inDrosophila melanogaster. II. Oviposition preference and differential survival.Behav. Genet. 20, 661–673.PubMedCrossRefGoogle Scholar
  209. Van Dijken F. R. 1982 Genetic aspects of locomotor activity of the fruitflyDrosophila melanogaster. Unpublished Doctoral Thesis, Rijksuniversiteit to Utrecht.Google Scholar
  210. Van Dijken F. R. and Scharloo W. 1979a Divergent selection on locomotor activity inDrosophila melanogaster. I. Selection response.Behav. Genet. 9, 543–553.PubMedCrossRefGoogle Scholar
  211. Van Dijken F. R. and Scharloo W. 1979b Divergant selection on locomotor activity inDrosophila melanogaster. II Test for reproductive isolation between selected lines.Behav. Genet. 9, 555–570.PubMedCrossRefGoogle Scholar
  212. Vernam C. J., Strauss R., Belle J. S. and Sokolowski M. B. 1996 Larval behaviour ofDrosophila control complex mutants. Interactions between no bridge, foraging and chaser.J. Neurogen. 11, 99–115.CrossRefGoogle Scholar
  213. Vaj E. and Jayakar S. D. 1976 Genetic studies on locomotor activity inDrosophila.Atti. Ass. Genet. It. 21, 208–210.Google Scholar
  214. Wallace B. 1974 Studies on intra and interspecific competition inDrosophila.Ecology,55, 227–244.CrossRefGoogle Scholar
  215. Walton P. D. 1968 The genetics of geotaxis inDrosophila melanogaster.J. Comp. Phys. Psy. 65, 186–190.CrossRefGoogle Scholar
  216. Walton P. D. 1970 The genetics of Phototaxis inDrosophila.Can. J. Genet. Cyto. 12, 283–287.Google Scholar
  217. Watabe H. 1995 Genetic analyses of the photoperiodic diapause ofDrosophila lumme Hackman (1972) (Diptera Drosophilidae).J. Hokk. Univ. Edu. 45, 1–6.Google Scholar
  218. Watanabe T. K. and Anderson W. W. 1976 Selection for geotaxis inDrosophila melanogaster: Heritability, degree of dominance and correlated responses to selection.Behav. Genet. 6, 71–86.PubMedCrossRefGoogle Scholar
  219. Williams K. D. and Sokolowski M. B. 1993 Diapause inDrosophila melanogaster females: a genetic analysis.Heredity 71, 312–317.PubMedCrossRefGoogle Scholar
  220. Woolf C. M. 1972 Genetic analysis of geotactic and phototactic behaviour in selected strains ofDrosophila pseudoobscura.Behav. Genet. 2, 93–106.PubMedCrossRefGoogle Scholar
  221. Woolf C. M., Sasmor H. M. and Markow T. A. 1978 Positive and negative geotaxis: Sex-linked traits inDrosophila pseudoobscura.Behav. Genet. 8, 65–71.PubMedCrossRefGoogle Scholar
  222. Zuker C. S., Cowman A. F. and Rubin G. M. 1985 Isolation and structure of arhodopsin gene fromDrosophila melanogaster.Cell 40, 851–858.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  1. 1.Genetics Laboratory, Department of ZoologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations