Journal of Astrophysics and Astronomy

, Volume 2, Issue 2, pp 187–199 | Cite as

Intersteller masers: The influence of the geometrical shape on the radiation properties

  • Erich Bettwieser


The relation between the minimum and the maximum of the energy density of the microwave field is important in determining the internal physical conditions in a maser source and is directly connected with the size of the emission spot. This relation is investigated for models of homogeneous maser clouds for three different geometries: a thin tube, a thin disk and a sphere.

For substantial degrees of saturation, an approximate analytical calculation scheme is presented. The radiation properties found satisfy the transfer and the rate equations well. As expected, the analysis supports the long standing view that the active medium is 10 to 100 times larger than the interferometer size. Here the real purpose is to provide some insight into the dependence of the radiation characteristics on the geometrical shape of the emission region. The luminosity is only slightly affected by the shape of the emitting region (for the same volume). However, the angular variation of the intensity and the peak intensity of the rays reflect sensitively on the geometrical shape.

Key words

cosmic masers radiative transfer influence of geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bettwieser, E. 1976,Astr. Astrophys.,50, 231.ADSGoogle Scholar
  2. Bettwieser, E. 1981,Astr. Astrophys.,93, 8.ADSGoogle Scholar
  3. Bettwieser, E., Kegel, W. H. 1974,Astr. Astrophys.,37, 291.ADSGoogle Scholar
  4. Bettwieser, E., Misselbeck, G. 1977,Astr. Astrophys.,61, 567.ADSGoogle Scholar
  5. Cook, A. H. 1968,Mon. Not. R. astr. Soc.,140, 299.ADSGoogle Scholar
  6. Cook, A. H. 1977,Celestial Masers, Cambridge University Press.Google Scholar
  7. Evans, N. J., Hills, R. E., Rydbeck, O.E.H., Kollberg, E. 1972,Phys. Rev.,A6, 1643.ADSGoogle Scholar
  8. Goldreich, P. 1975, inAtomic and Molecular Physics and the Interstellar Matter, Eds R. Balian, P. Encrenaz, J. Lequeux, North Holland, Amsterdam, p. 409.Google Scholar
  9. Goldreich, P., Keeley, D. A. 1972,Astrophys. J.,174, 517.CrossRefADSGoogle Scholar
  10. Goldreich, P., Keeley, D. A., Kwan, J. Y. 1973,Astrophys. J.,179, 111.CrossRefADSGoogle Scholar
  11. Goldreich, P., Kwan, J. 1974,Astrophys. J.,191, 93.CrossRefADSGoogle Scholar
  12. Haken, H. 1970, inEncyclopedia of Physics,XXV/2C, Ed. L. Genzel, Springer-Verlag, Berlin.Google Scholar
  13. Jefferies, J. T. 1968,Spectral Line Formation, Blaisdell, Waltham.Google Scholar
  14. Keeley, D. A. 1974,Astrophys. J.,192, 601.CrossRefADSGoogle Scholar
  15. Kegel, W. H. 1979,Astr. Astrophys. Suppl. Ser.,38, 131.ADSGoogle Scholar
  16. Lang, R., Bender, P. L. 1973,Astrophys. J.,180, 647.CrossRefADSGoogle Scholar
  17. Litvak, M. M. 1971,Astrophys. J.,170, 71.CrossRefADSGoogle Scholar
  18. Litvak, M. M. 1973,Astrophys. J.,182, 711.CrossRefADSGoogle Scholar
  19. Maeda, H., Yariv, A. 1973,Phys. Lett.,43A, 383.ADSGoogle Scholar
  20. Maiman, T. H., 1961,Phys. Rev.,123, 1145.CrossRefADSGoogle Scholar
  21. Mandelbrot, M. M. 1978,Form, Chance and Dimension, Freeman, San Francisco.Google Scholar
  22. Rosen, R. A. 1974,Astrophys. J.,190, L73.CrossRefADSGoogle Scholar
  23. Yorke, H. W. 1979,Astr. Astrophys.,80, 308.ADSGoogle Scholar
  24. Yorke, H. W. 1980,Astr. Astrophys.,85, 215.ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1981

Authors and Affiliations

  • Erich Bettwieser
    • 1
  1. 1.Universitats-SternwarteGöttingenW. Germany

Personalised recommendations