Modeling creep damage based on real microstructure
- 114 Downloads
Abstract
This paper outlines a method to model creep failure of polycrystalline materials based on a real microstructure taken from an optical microscope. The creep failure is simulated in 304 stainless steel and the simulation is based on Norton’s creep law. By treating the grain boundaries and the grains differently and adopting the void nucleation process proposed by Shewmon, the creep strain energy density can be used as a failure criterion. The result of the simulation confirmed the results of conventional methods used in a high-temperature remnant life assessment. The intermediate results of the simulation process allow calculation/monitoring of stiffnesses degradation as the material undergoes creep failure.
Keywords
creep failure high-temperature RLA (remnant life assessment) stiffness degradationPreview
Unable to display preview. Download preview PDF.
References
- 1.S. Journaux, P. Gouton, and G. Thauvin:J. Mater. Process. Tech., 2001,117, p. 132.CrossRefGoogle Scholar
- 2.H.E. Evans:Mechanisms of Creep Fracture, Elsevier Applied Science Publishers, 1985.Google Scholar
- 3.H.J. Frost and M.E. Ashby:Deformation Mechanisms Maps, The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982.Google Scholar
- 4.H. Oikawa and T.G. Langdon:Creep Behavior of Crystalline Solids, B. Wilshire and R.W. Evans, Ed., Pineridge Press, 1985, p. 33.Google Scholar
- 5.S.V. Raj:Mat. Sci. Eng. A., 2002,322, p. 132.CrossRefGoogle Scholar
- 6.A.K. Mukherjee: “An Examination of the Constitutive Equation for Elevated Temperature Plasticity,”Mat. Sci. Eng. A., 2002,322, pp. 1–22CrossRefGoogle Scholar
- 7.W.D. Nix and B. Ilschner:Strength of Metals and Alloys, P. Haasen and V. Gerold, Ed., Pergamon Press, Oxford, 1980, p. 1503.Google Scholar
- 8.A.N. Campbell, S.S. Tao, and D. Turnbull:Acta. Metall. Mater., 1987,35, p. 2453.CrossRefGoogle Scholar
- 9.P. Keblinski, D. Wolf, and S.R. Phillpot:Interface Sci., 1998,6, p. 205.CrossRefGoogle Scholar
- 10.C. Hahn and K.S. Kim: “Time-Dependent Crack Growth in Stainless Steel 304 in the Plasticity-Dominant Field,”Eng. Fract. Mech., 2001,68, pp. 39–52.CrossRefGoogle Scholar
- 11.A.S. Argon, J. Im, and N.R. Moody:Metall. Trans. A., 1975,6, p. 825.CrossRefGoogle Scholar
- 12.M.W.D. Van Der Burg, E. Van Der Giessen, and R.C. Brouwer: “Investigation of Hydrogen Attack in 2.25Cr-1Mo Steels with a High-Triaxiality Void Growth Model,”Acta. Metall. Mater., 1996,44, pp. 505–518.Google Scholar
- 13.E.D. Giessen and V. Tvergaard:Mech. Mater., 1994,77, p. 47.Google Scholar
- 14.H. Riedel:Material Science Technology, vol. 6, R.W. Cahn, P. Haasen, and E.J. Cramer, Ed., VCH Verlag, New York, 1993, p. 565.Google Scholar
- 15.P. Shewmon and P. Anderson:Acta. Mater., 1998,46, p. 4861.CrossRefGoogle Scholar
- 16.A.S. Argon:Recent Advances in Creep and Fracture of Engineering Material and Structures, B. Wilshire and D.R.J. Owen, Ed., Pineridge Press, Swansea, 1982, p. 1.Google Scholar
- 17.P.J. Clemm and J.C. Fisher:Acta. Metall. Mater., 1955,3, p. 70.CrossRefGoogle Scholar
- 18.H. Riedel: ASTM STP700, ASTM, W. Conshohocken, PA, 1980, p. 112.Google Scholar
- 19.Y.J. Kim:Int. J. Pres. Ves. Pip., 2000,78, p. 661.CrossRefGoogle Scholar
- 20.T.L. Anderson:Fracture Mechanics, CRC Press, Inc., 1995.Google Scholar
- 21.W.C. Carter, S.A. Langer, and E.R. Fuller: “OOF Manual,” NISTIR 6256, 1 Nov 1998.Google Scholar
- 22.“Theory Reference—ANSYS Release 6.0,” ANSYS, Inc., Canonsburg, PA, 2000.Google Scholar
- 23.D. Cioranescu and P. Donato:An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, New York, 1999.Google Scholar
- 24.Q.M. Li:Int. J. Solids Struct., 2000,37, p. 4539.CrossRefGoogle Scholar
- 25.B. Hassani and E. Hinton: “A Review of Homogenization and Topology Optimization,”Comput. Struct., 1998,69, p. 707.CrossRefGoogle Scholar