Advertisement

Mikrochemie

, Volume 11, Issue 1, pp 353–368 | Cite as

Photoelectric colorimetry V; applications of the “Sperrschicht” type photoelectric cells

  • Ralph H. Müller
Originalabhandlungen

Summary

1. The “Sperrschicht” type cells have been investigated with respect to their physical properties and the conditions for precise photometry have been established.

2. In conformity with the findings of previous workers, the short circuit current was found to be proportional to the light intensity.

3. It has been shown that variations in voltage across the light source constitute one of the most important objections to the single cell method of photometry. The requisite voltage constancy is easily determined from a simple exponential law.

4. It has been found that the proper choice of filter, absorption cell thickness, and concentration of the solution will enable one to satisfyBeer’s law and greatly simplify measurements.

5. Photoelectric methods should enable the analyst to avail himself of all the advantages of colorimeter analysis and in addition increase the speed and precision of determinations. Fatigue in the observer is reduced to a minimum.

Keywords

Short Circuit Current Light Filter Incandescent Lamp Methyl Violet Usual Macro 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    R. H. Müller andH. M. Partridge, J. Ind. and Eng. Chem.,20, 423 (1928).CrossRefGoogle Scholar
  2. 2.
    R. H. Müller andH. M. Partridge, J. Ind. and Eng. Chem. Anal. Ed.,5, 169 (1931).CrossRefGoogle Scholar
  3. 3.
    A. S. Williams, R. H. Müller andJ. B. Niederl, Mikrochemie,IX, 268 (1931).Google Scholar
  4. 4.
    R. H. Müller, Mikrochemie,X, 285 (1931).Google Scholar
  5. 5.
    Hughes andDuBridge, “Photoelectric Phenomena” McGraw-Hill Co., N. Y. 1932, p. 361.Google Scholar
  6. 6.
    Grondahl, Science,36, 306 (1926); J. Am. Inst. Elec. Eng.,46, 215 (1927)CrossRefGoogle Scholar
  7. 7.
    Lange, Physikal. Ztschr.,31, 139 (1930);31, 964 (1930).Google Scholar
  8. 8.
    W. Schottky, Physikal. Ztschr.,39, 913 (1930).Google Scholar
  9. 9.
    E. Duhme andW. Schottky, Naturwiss.,18, 735 (1930).CrossRefGoogle Scholar
  10. 10.
    Pfund, Phys. Rev.,34, 370 (1912);7, 289 (1916).Google Scholar
  11. 11.
    O. Auwers andH. Kerschbaum, Ann. Physik (5),7, 129 (1930).CrossRefGoogle Scholar
  12. 12.
    Bergmann, Physikal. Ztschr.,31, 375 (1931).Google Scholar
  13. 13.
    Graffunder, Physikal. Ztschr.,31, 375 (1931).Google Scholar
  14. 14.
    H. Kerschbaum, Naturwiss.,18, 832 (1930).CrossRefGoogle Scholar
  15. 15.
    Teichmann, Physikal. Ztschr.,32, 216 (1931).Google Scholar
  16. 16.
    Teichmann, Ztschr. Physik,65, 709 (1930);67, 192 (1931).CrossRefGoogle Scholar
  17. 17.
    Duhme, Ztschr. Elektrochem.,37, pp. 682–684 (1931).Google Scholar
  18. 19.
    Perucca andDeaglio, Ann. d. Physik,10, 3, p. 257–262 (1931).CrossRefGoogle Scholar
  19. 19.
    O. Auwers andH. Kerschbaum, Ann. d. Physik,10, 3, p. 262 (1931).CrossRefGoogle Scholar
  20. 20.
    Dubar, Compt. rend. Acad. Sciences,193, 659–661 (1931).Google Scholar
  21. 21.
    Perucca andDeaglio, Ztschr. Physik,72, 1–2, p. 102–105 (1931).CrossRefGoogle Scholar
  22. 22.
    Von Körösy andSelényi, Physikal. Ztschr.,32, p. 847–850 (1931).Google Scholar
  23. 23.
    Lange, Physikal. Ztschr.,32, p. 850–856 (1931).Google Scholar
  24. 24.
    Dember, Physikal. Ztschr.,32, 856–858 (1931).Google Scholar
  25. **.
    From the S. A. Nürnberg.Google Scholar

Copyright information

© Emil Haim & Co. 1932

Authors and Affiliations

  • Ralph H. Müller
    • 1
  1. 1.Contribution from the Chemical Laboratory of the Washington Square College of New York UniversityNew York

Personalised recommendations