Skip to main content
Log in

RMS Titanic: A metallurgical problem

  • Features
  • A Look Back
  • Published:
Practical Failure Analysis Aims and scope Submit manuscript

Abstract

On 14 April 1912, at 11:40 p.m., Greenland Time, the Royal Mail Ship Titanic on its maiden voyage was proceeding westward at 21.5 knots (40 km/h) when the lookouts on the foremast sighted a massive iceberg estimated to have weighed between 150,000 to 300,000 tons at a distance of 500 m ahead. Immediately, the ship’s engines were reversed and the ship was turned to port (left) in an attempt to avoid the iceberg. In about 40 seconds, the ship struck the iceberg below the waterline on its starboard (right) side near the bow. The iceberg raked the hull of the ship for 100 m, destroying the integrity of the six forward watertight compartments. Within 2 h 40 min the RMS Titanic sank.

Metallurgical examination and chemical analysis of the steel taken from the Titanic revealed important clues that allow an understanding of the severity of the damage inflicted on the hull. Although the steel was probably as good as was available at the time the ship was constructed, it was very inferior when compared with modern steel. The notch toughness showed a very low value (4 joules) for the steel at the water temperature (−2 °C) in the North Atlantic at the time of the accident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.E. Bonsall:Titanic, Bookman Publishing Co., Baltimore, MD, 1987, p. 32.

    Google Scholar 

  2. C.R. Pellegrino:Her Name, Titanic, Avon Books, New York, 1988, p. 124.

    Google Scholar 

  3. R.B. Ballard with Rick Archbold:The Discovery of the Titanic, Warner Books, New York, 1987.

    Google Scholar 

  4. C. Hackett and J.G. Bedford:The Sinking of the Titanic Investigated by Modern Techniques, The Northern Ireland Branch of the Institute of Marine Engineers and the Royal Institution of Naval Architects, 26 March 1996.

  5. A Technical Survey of the Colville Group of Companies, A. McLeod and D. Cleal, ed., Iron & Coal Trades Review, London, England, 1957, pp. 6–7, 34–47, 48–55, 96–99.

    Google Scholar 

  6. R.J. Bringham and Y.A. Lafreniere:Titanic Specimens, Report 92-32(TR), Materials Technology Laboratories, CANMET, Ottawa, Canada, 1992.

    Google Scholar 

  7. R. Davis:J. Hist. Met. Soc., 1995, vol. 29(1), pp. 34–45.

    Google Scholar 

  8. A.J. Rossi:Trans. AIME, 1892–1895, vol. XXI, pp. 832–867.

    Google Scholar 

  9. H.H. Campbell:The Manufacture and Properties of Iron and Steel, Hill Publishing Co., New York, NY, 1907, p. 42.

    Google Scholar 

  10. G. Charpy:Report on Impact Tests of Metals, Proceedings, International Association for Testing Materials, Vienna, Austria, vol. 1(5), May 1908 – Feb 1910.

  11. M. Moss and J.R. Hume:Shipbuilders of the World, 125 Years of Harland and Wolff, Blackstaff Press, Belfast, Ireland, 1986.

    Google Scholar 

  12. K. Felkins, H.P. Leighly, Jr., and A. Jankovic:JOM, 1998, vol. 50(1), pp. 12–18.

    Article  CAS  Google Scholar 

  13. B.L. Bramfitt, S.J. Lawrence, and H.P. Leighly, Jr.:Iron & Steelmaker, 1999, vol. 26(9), pp. 29–40.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leighly, H.P., Bramfitt, B.L. & Lawrence, S.J. RMS Titanic: A metallurgical problem. Practical Failure Analysis 1, 10–13 (2001). https://doi.org/10.1007/BF02715155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715155

Keywords

Navigation