Advertisement

Journal of Astrophysics and Astronomy

, Volume 6, Issue 4, pp 203–226 | Cite as

Low density ionized gas in the inner galaxy — Interpretation of recombination line observations at 325 MHz

  • K. R. Anantharamaiah
Article

Abstract

The recent survey of H 272α recombination line (324.99 MHz) in the direction of 34 Hn regions, 12 SNRs and 6 regions of continuum minimum (‘blank’ regions) in the galactic plane is used to derive the properties of diffuse ionized gas in the inner Galaxy.

The intensity of radio recombination lines at high frequencies is dominated by spontaneous emission in high-density gas and that at low frequencies (325 MHz) by stimulated emission in low-density gas. We have used this property to obtain the electron density in the gas in the direction of blank regions and SNRs, by combining the H 272 α measurements (preceeding paper) with the published data at higher frequencies. Further, we have imposed constraints on the electron temperature and pathlength through this gas using the observed high-frequency continuum emission, average interstellar electron density and geometry of the line-emitting regions. The derived properties of the gas are (i) electron density 0.5–6 cm-3, (ii) electron temperature 3000–8000 K and (iii) emission measures 500–3000 pc cm-6 The corresponding pathlengths are 50–200 pc.

As the derived sizes of the low-density regions are small compared to the pathlength through the Galaxy, the low-frequency recombination lines cannot be considered as coming from a widely distributed component of the interstellar medium.

The Hn regions studied in the above survey cannot themselves produce the H 272α lines detected towards them because of pressure broadening, optical depth, and beam dilution. However, the agreement in velocity of these lines with those seen at higher frequencies suggests that the low-frequency recombination lines arise in low-density envelopes of the Hn regions. Assuming that the temperature of the envelopes are similar to those of the cores and invoking geometrical considerations we find that these envelopes should have electron densities in the range 1–10 cm-3 and linear sizes of 30–300 pc in order to produce the observed H 272α lines.

Key words

Galaxy, recombination lines galactic ridge interstellar medium, electron densities Hii regions, low density envelopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenhoff, W. J., Downes, D., Goad, L., Maxwell, A., Rinehart, R. 1970,Astr. Astrophys. Suppl.,1, 319.ADSGoogle Scholar
  2. Altenhoff, W. J., Downes, D., Pauls, T., Schraml, J. 1978,Astr. Astrophys. Suppl.,35, 23.ADSGoogle Scholar
  3. Anantharamaiah, K. R. 1985a,J. Astrophys. Astr.,6, 177, (Paper 1).ADSGoogle Scholar
  4. Anantharamaiah, K. R. 1985b, In preparation.Google Scholar
  5. Bignell, R. C. 1973,Astrophys. J.,186, 889.CrossRefADSGoogle Scholar
  6. Brocklehurst, M., Leeman, S. 1971,Astrophys. Lett.,9, 35.ADSGoogle Scholar
  7. Brocklehurst, M., Salem, M. 1977,Computer Phys. Commun.,13, 39.CrossRefADSGoogle Scholar
  8. Brocklehurst, M., Seaton, M. J. 1972,Mon. Not. R. astr. Soc.,157, 179.ADSGoogle Scholar
  9. Brown, R. L., Lockman, F. J., Knapp, G. R. 1978,A. Rev. Astr. Astrophys.,16, 445.CrossRefADSGoogle Scholar
  10. Cesarsky, D. A., Cesarsky, C. J. 1973a,Astrophys. J.,183, L143.CrossRefADSGoogle Scholar
  11. Cesarsky, D. A., Cesarsky, C. J. 1973b,Astrophys. J.,184, 83.CrossRefADSGoogle Scholar
  12. Clark, D. H., Caswell, J. L. 1976,Mon. Not. R. astr. Soc,174, 267.ADSGoogle Scholar
  13. Downes, D., Wilson, T. L. 1974,Astr. Astrophys.,34, 133.ADSGoogle Scholar
  14. Downes, D., Wilson, T. L., Bieging, J., Wink, J. 1980,Astr. Astrophys. Suppl.,40, 379.ADSGoogle Scholar
  15. Dulk, G. A., Slee, O. B. 1972,Aust. J. Phys.,25, 429.ADSGoogle Scholar
  16. Dulk, G. A., Slee, O. B. 1975,Astrophys. J.,199, 61.CrossRefADSGoogle Scholar
  17. Gordon, K. J., Gordon, C. P., Lockman, F. J. 1974,Astrophys. J.,192, 337.CrossRefADSGoogle Scholar
  18. Gordon, M. A., Brown, R. L., Gottesman, S. T. 1972,Astrophys. J.,178, 119.CrossRefADSGoogle Scholar
  19. Gordon, M. A., Cato, T. 1972,Astrophys. J.,176, 587.CrossRefADSGoogle Scholar
  20. Gordon, M. A., Gottesman, S. T. 1971,Astrophys. J.,168, 361.CrossRefADSGoogle Scholar
  21. Gottesman, S. T., Gordon, M. A. 1970,Astrophys. J.,162, L93.CrossRefADSGoogle Scholar
  22. Griem, H. R. 1967,Astrophys. J.,148, 547.CrossRefADSGoogle Scholar
  23. Hart, L., Pedlar, A. 1976a,Mon. Not. R. astr. Soc.,176, 135.ADSGoogle Scholar
  24. Hart, L., Pedlar, A. 1976b,Mon. Not. R. astr. Soc,176, 547.ADSGoogle Scholar
  25. Haynes, R. F., Caswell, J. L., Simons, L. W. J. 1978,Aust. J. Phys. Astrophys. Suppl.,45, 1.ADSGoogle Scholar
  26. Jackson, P. D., Kerr, F. J. 1971,Astrophys. J.,168, 29.CrossRefADSGoogle Scholar
  27. Jackson, P. D., Kerr, F. J. 1975,Astrophys. J.,196, 723.CrossRefADSGoogle Scholar
  28. Lockman, F. J. 1976,Astrophys. J.,209, 42.CrossRefGoogle Scholar
  29. Lockman, F. J. 1980, inRadio Recombination Lines, Ed. P. A. Shaver, D. Reidel, Dordrecht, p. 185.Google Scholar
  30. Mebold, U., Altenhoff, W. J., Churchwell, E., Walmsley, C. M. 1976,Astr. Astrophys.,53, 175.ADSGoogle Scholar
  31. Oster, L. 1961,Rev. Mod. Phys.,33, 525.MATHCrossRefADSMathSciNetGoogle Scholar
  32. Osterbrock, D. E. 1974,Astrophysics of Gaseous Nebulae, Freeman, San Francisco.Google Scholar
  33. Pankonin, V. 1975,Astr. Astrophys.,38, 445.ADSGoogle Scholar
  34. Pankonin, V., Parrish, A., Terzian, Y. 1974,Astr. Astrophys.,37, 411.ADSGoogle Scholar
  35. Parrish, A., Conklin, E. K., Pankonin, V. 1977,Astr. Astrophys.,58, 319.ADSGoogle Scholar
  36. Pedlar, A., Davies, R. D. 1980, inRadio Recombination Lines, Ed. P. A. Shaver, D. Reidel, Dordrecht, p. 171.Google Scholar
  37. Pedlar, A., Davies, R. D., Hart, L., Shaver, P. A. 1978,Mon. Not. R. astr. Soc,182, 473.ADSGoogle Scholar
  38. Pedlar, A., Matthews, H. E. 1973,Mon. Not. R. astr. Soc,165, 381.ADSGoogle Scholar
  39. Radhakrishnan, V., Goss, W. M., Murray, J. D., Brooks, J. W. 1972,Astrophys. J. Suppl. Ser.,24, 49.CrossRefADSGoogle Scholar
  40. Salem, M., Brocklehurst, M. 1979,Astrophys. J. Suppl.,39, 633.CrossRefADSGoogle Scholar
  41. Shaver, P. A. 1975,Pramana,5, 1.ADSCrossRefGoogle Scholar
  42. Shaver, P. A. 1976,Astr. Astrophys.,49, 1.ADSGoogle Scholar
  43. Shaver, P. A., Goss, W. M. 1970,Aust. J. Phys. Astrophys. Suppl.,14, 133.ADSGoogle Scholar
  44. Silvergate, P. R., Terzian, Y. 1979,Astrophys. J. Supp.,39, 157.CrossRefADSGoogle Scholar
  45. Spitzer, L. 1978,Physical processes in the Interstellar Medium, Wiley-Interscience, New York.Google Scholar
  46. Viner, M. R., Vallée, J. P., Hughes, V. A. 1979,Astr. J.,84, 1335.CrossRefADSGoogle Scholar
  47. Vivekanand, M., Narayan, R. 1982,J. Astrophys. Astr.,3, 399.CrossRefADSGoogle Scholar
  48. Wilson, T. L. 1980, inRadio Recombination Lines, Ed. P. A. Shaver, D. Reidel, Dordrecht, p. 205Google Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • K. R. Anantharamaiah
    • 1
  1. 1.Raman Research InstituteBangalore

Personalised recommendations