Journal of Astrophysics and Astronomy

, Volume 10, Issue 3, pp 261–277 | Cite as

Multiple shocks in the rotating winds from self-gravitating discs

  • Sandip K. Chakrabarti


We present the analytic theory of dissipative and non-dissi-pative shocks in the rotating outflows in both the pseudo-Newtonian and the Schwarzschild geometry. We include the effects of the self gravity of the surrounding massive disc and show that the flow may have as many as five critical points when the angular momentum and the disc mass are sufficiently high. This leads to the possibility of the multipleannular shocks within the flow. We derive the expressions correlating the pre-shock and the post-shock quantities for all the three principal types of discontinuities. From these relations it is shown that for given initial flow parameters such as the angular momentum and the energy there could be as many as eighteen formal shock locations out of which at most two are chosen in reality. Detailed classification of the parameter space in terms of the initial flow parameters will be discussed elsewhere

Key words

winds jets bipolar outflows black holes self-gravity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowicz, M. A., Chakrabarti, S. K. 1989,Astrophys. J., (submitted).Google Scholar
  2. Abramowicz, M. A., Zurek, W. H. 1981,Astrophys. J.,246, 314.CrossRefADSGoogle Scholar
  3. Anderson, M. 1989,Mon. Not. R. astr. Soc, (in press).Google Scholar
  4. Begelman, M., Blandford, R., Rees, M. J. 1984,Rev. mod. Phys.,56, 255.CrossRefADSGoogle Scholar
  5. Chakrabarti, S. K. 1986,Astrophys: J.,303, 582.CrossRefADSGoogle Scholar
  6. Chakrabarti, S. K. 1988,J. Astrophys. Astr.,9, 49.CrossRefADSGoogle Scholar
  7. Chakrabarti, S. K. 1989a,Publ. astr. Soc. Japan, (C1, in press).Google Scholar
  8. Chakrabarti, S. K. 1989b,Astrophys. J.,337, L89 (C2).CrossRefADSGoogle Scholar
  9. Chakrabarti, S. K. 1989c,Mon. Not. R. astr. Soc, (in press).Google Scholar
  10. Chakrabarti, S. K. 1989d,Astrophys. J., (in press).Google Scholar
  11. Chakrabarti, S. K. 1989e,Mon. Not. R. astr. Soc, (submitted).Google Scholar
  12. Chandrasekhar, S. 1983,Mathematical Theory Of Black Holes, Cambridge Univ. Press.Google Scholar
  13. Chang, K. M., Ostriker, J. P. 1985,Astrophys. J.,288, 428.CrossRefADSGoogle Scholar
  14. Ferrari, A., Trussoni, E., Rosner, R., Tsinganos K. 1985,Astrophys. J.,294, 397.CrossRefADSGoogle Scholar
  15. Fukue, J. 1982,Publ. astr. Soc. Japan,34, 163.ADSGoogle Scholar
  16. Fukue, J. 1987,Publ. astr. Soc. Japan,39, 309.ADSGoogle Scholar
  17. Holzer, T. E. 1977,J. geophys. Res.,82, 23.ADSCrossRefGoogle Scholar
  18. Landau, L. D., Lifshitz, F. D. 1959,Fluid Dynamics, Pergamon Press, New York.Google Scholar
  19. Liang, E. P. T., Thompson, K. A. 1980,Astrophys. J.,240, 271.CrossRefADSGoogle Scholar
  20. Paczynski, B., Wiita, P. J. 1980,Astr. Astrophys.,88, 23.ADSGoogle Scholar
  21. Parker, E. N. 1963,Interplanetary Dynamical Processes, Interscience, New York.MATHGoogle Scholar
  22. Poston, T., Stewart, I. 1978,Catastrophe Theory and its Applications, Pitman, London.MATHGoogle Scholar
  23. Pudritz, R. E., Norman, C. A. 1983,Astrophys. J.,274, 677.CrossRefADSGoogle Scholar
  24. Silvestro, G. Ferrari, A., Rosner, R., Trussoni, E., Tsinganos, K. 1987,Nature,325, 228.CrossRefADSGoogle Scholar
  25. Uchida, Y., Kaifu, N., Shibata, K., Hayashi, S. S., Hasegawa, T., Hamatake, H. 1988,Publ. astr. Soc. Japan,39, 907.ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1989

Authors and Affiliations

  • Sandip K. Chakrabarti
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombay

Personalised recommendations