Advertisement

Local noncuppability in R/M

  • Zhang Zaiyue 
  • Sui Yuefei 
Scientific Papers
  • 14 Downloads

Abstract

Given any [c], [a], [d] xxxxxxxxR/M such that [d] ≤ [a] ≤ [c], [a] is locally noncuppable between [c] and [d] if [d] < [a] ≤ [c] and [a] ∨ [b] < [c] for any [b] xxxxxxxxR/M such that [d] ≤ [b] < [c]. It will be shown that given any nonzero [c] xxxxxxxxR/M, there are [a], [d] xxxxxxxxR/M such that [d] < [a] ≤ [c] and [a] is locally noncuppable between [c] and [d].

Keywords

recursively enumerable degree cappable semilattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambos-Spies, K., Jockusch, C.G. Jr., Shore R.A. et al., An algebraic decomposition of the recursively enumerable degrees and the coincidence of several classes with the promptly simple degrees, Trans. Amer. Math. Soc., 1984(281): 109–128.Google Scholar
  2. 2.
    Schwarz, S., The quotient semilattice of the recursively enumerable degrees modulo the cappable degrees, Trans. Amer. Math. Soc., 1984 (283): 315–328.Google Scholar
  3. 3.
    Jockusch, C. G. Jr., Review of Schwarz, Math. Review, 1984, 85i: 3777.Google Scholar
  4. 4.
    Slaman, T. A., Questions in recursion theory, in London Mathematical Society Lecture Note Series 224, Cambridge: Cambridge University Press, 1996.Google Scholar
  5. 5.
    Yi, X., Extension of embedding on the recursively enumerable degrees modulo the cappable degrees, in London Mathematical Society Lecture Note Series 224, Cambridge: Cambridge University Press, 1996.Google Scholar
  6. 6.
    Sui, Y., Zhang, Z., The cupping theorem inR/M, The Journal of Symbolic Logic, 1999, 64(2): 643–650.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Soare, R. I., Recursively Enumerable Sets and Degrees, Ω-series, Berlin: Springer-Verlag, 1987.Google Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Zhang Zaiyue 
    • 1
  • Sui Yuefei 
    • 2
  1. 1.Department of Computer ScienceYangzhou UniversityYangzhouChina
  2. 2.Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations