Il Nuovo Cimento B (1965-1970)

, Volume 55, Issue 2, pp 335–347 | Cite as

On a model for monoatomic liquids

  • S. Franchetti


A simple model for the structure of monoatomic liquids, related to a previous one of Prins and Petersen, is described and the formulae for the radial density, the time-dependent radial density and the scattering function are worked out.


Lattice Vector Scattered Intensity Radial Density Origin Lattice Order Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

К модели для моноатомных жидкостей


Описывается простая модель для структуры моноатомных жидкостей, свяэанная с предыдушей моделью Принса и Петерсена, и выводятся формулы для радиальной плотности, для радиальной плотности, эависяшей от времени, и для функции рассеяния.


Si discute un modello semplice, valido per la struttura dei liquidi monoatomici e connesso con una precedente ipotesi dovuta a Prins e Petersen. Precisato il modello, se ne deducono delle formule approssimate per la densità radiale, la densità radiale dipendente dal tempo e per la funzione di scattering.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    This model, in its essential lines, was arrived at during some previous work on the structure of liquid4He. (S. Franchetti:Nuovo Cimento,22, 374 (1961).) We describe it here in a more detailed way and for a nonquantum liquid.CrossRefGoogle Scholar
  2. (5).
    J. A. Prins andH. Petersen:Physica,3, 147 (1936).ADSCrossRefGoogle Scholar
  3. (6).
    R. Kaplow, S. L. Strong andB. L. Averbach:Phys. Rev.,138, A 1336 (1965);R. R. Fessler, R. Kaplow andB. L. Averbach:Phys. Rev.,150, 34 (1966).Google Scholar
  4. (8).
    J. Frenkel:Kinetic Theory of Liquids (Oxford, 1946), p. 114.Google Scholar
  5. (10).
    G. Fournet:Enc. of Phys.,32, 244 (1957).Google Scholar
  6. (11).
    G. H. Vineyard: inLiquid Metals and Solidification (published by the American Society of Metals), p. 30. The author is indebted toG. H. Vineyard for kindly supplying him with a reproduction of this article.Google Scholar
  7. (12).
    F. Zernike andJ. A. Prins:Zeits. f. Phys.,41, 184 (1927).ADSGoogle Scholar
  8. (13).
    In principle, neutrons should of course be treated differently, as the fundamental work ofVan Hove and others has shown. When however it comes to the practical job of deducing the radial density from the scattering data, it is the Zernike and Prins equation, valid for X-rays, that is mostly employed. That one can improve somewhat upon this procedure has been shown only recently byP. Ascarelli andG. Caglioti:Nuovo Cimento,43 B, 375 (1966).ADSCrossRefGoogle Scholar
  9. (15).
    In particular, formula 26, p. 74, vol.1 ofA. Erdelyi,et al.: Tables of Integral Transforms (New York, 1954). In this formula the value of the Erfc is indistinguishable from 2.0. (SeeM. Abramovitz andI. Stegun:Handbook of Mathematical Functions, formula 7.1.29 (New York, 1965), p. 299.)Google Scholar

Copyright information

© Socictà Italiana di Fisica 1968

Authors and Affiliations

  • S. Franchetti
    • 1
  1. 1.Istituto di Fisica dell’UniversitàFirenze

Personalised recommendations