Journal of Chemical Sciences

, Volume 116, Issue 6, pp 339–345 | Cite as

Studies of effect of heterocyclic dyes in photogalvanic cells for solar energy conversion and storage: NaLS-ascorbic acid system

  • K. R. Genwa
  • Anju Chouhan
Full Papers


The photogalvanic effect has been studied in three systems using photogalvanic cells and NaLS-ascorbic acid-azur A, NaLS-ascorbic acid-azur B, NaLS-ascorbic acid-azur C systems. The photopotential and photocurrent generated by these systems are 7700, 9710, 623·0 mV and 160·0, 185·0, 145·0 (μA respectively. The effects of different parameters on the electrical outputs of the cell have been observed and current-voltage characteristics of the cell studied, and a mechanism has been proposed for the generation of photocurrent in photogalvanic cells. The conversion efficiencies for azur A, azur B and azur C are 0·5461, 0·9646 and 0·4567% and storage capacity 110, 135 and 95 min respectively.


Photogalvanic cell heterocyclic dyes azur A azur B azur C NaLS ascorbic acid fill factor conversion efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rideal E K and Williams D C 1925J. Chem. Soc. 258Google Scholar
  2. 2.
    Rabinowitch E 1940J. Chem. Phys. 8 551CrossRefGoogle Scholar
  3. 3.
    Rabinowitch E 1940J. Chem. Phys. 8 560CrossRefGoogle Scholar
  4. 4.
    Potter A C and Thaller L H 1959Solar Energy 3Google Scholar
  5. 5.
    Gomor R 1975Electrochim. Acta 20 13CrossRefGoogle Scholar
  6. 6.
    Clark W D K and Eckert J A 1975Solar Energy 17 147CrossRefGoogle Scholar
  7. 7.
    Kaneko M and Yamada A 1977J. Phys. Chem. 81 1213CrossRefGoogle Scholar
  8. 8.
    Wildes P D and Lichtin N N 1978J. Phys. Chem. 52 981CrossRefGoogle Scholar
  9. 9.
    Hoffman M Z and Litchin N N 1979Solar Energy 153Google Scholar
  10. 10.
    Wyart Romy, Memaeker A K D and Naslelski 1979Nouv. J. Chem. 3 303Google Scholar
  11. 11.
    Ameta S C, Jain P K, Janoo A K and Ameta R 1985Energy J. 58 8Google Scholar
  12. 12.
    Ameta S C, Ameta R, Sharma D and Dubey T D 1987Hungarian J. Ind. Chem. 15 377Google Scholar
  13. 13.
    Ameta S C, Khamesra S, Gangotri K M and Seth S 1990Z. Phys. Chem. (Leipzig) 271 427Google Scholar
  14. 14.
    Gangotri K M, Regar O P, Chhagan Lal, Kalla P, Genwa K R and Meena R 1996Int. J. Energy Res. 20 581CrossRefGoogle Scholar
  15. 15.
    Gangotri K M, Genwa K R, Chhagan Lal, Kalla P, Reger O P and Meena R 1997Arab. J. Sci. Eng. 22 115Google Scholar
  16. 16.
    Gangotri K M, Meena R C and Meena R 1999J. Photochem. Photobiol. A123 93CrossRefGoogle Scholar
  17. 17.
    Gangotri K M and Regar O P 2000J. Indian Chem. Soc. 77 347Google Scholar
  18. 18.
    Gangotri K M and Chhagan Lal 2001Energy Sources 23 267CrossRefGoogle Scholar
  19. 19.
    Genwa K R and Gangotri K M 2001AFINIDAD 58 492Google Scholar
  20. 20.
    Gangotri K M and Meena R C 2001J. Photochem. Photobiol. A141 175CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2004

Authors and Affiliations

  • K. R. Genwa
    • 1
  • Anju Chouhan
    • 1
  1. 1.Department of ChemistryJai Narain Vyas UniversityJodhpurIndia

Personalised recommendations