Bulletin of Materials Science

, Volume 28, Issue 5, pp 503–510 | Cite as

Silver nanoparticles of variable morphology synthesized in aqueous foams as novel templates

  • Saikat Mandal
  • Sujatha K. Arumugam
  • Renu Pasricha
  • Murali Sastry


In this paper, we describe the synthesis of silver nanocrystals within aqueous foams as a template. More specifically, we show that aqueous Ag+ions may be electrostatically complexed with the anionic surfactants aerosol OT (sodiumbis-2-ethylhexyl-sulfosuccinate, (AOT) and sodium dodecyl sulphate (SDS)) in a highly stable liquid foam. After drainage of the foam, the silver ions are reducedin situby introducing sodium borohydride into the foam by capillary flow. This leads to the formation of silver nanoparticles of spherical, tape-and sheet-like morphology in the foam. The structure of the foam is extremely complex and presents reaction sites of different spatial extent. The differences in foam reaction-site geometry are believed to be responsible for the morphology variation in the silver nanoparticles observed. The silver nanoparticles are observed to be extremely stable in solution suggesting that the AOT or SDS molecules stabilize them. This approach appears promising for application in large-scale synthesis of nanoparticles and may be readily extended to other chemical compositions.


Composites chemical synthesis intercalation foam nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alivisatos A P 1996Science 271 933CrossRefGoogle Scholar
  2. Berman A D, Ahn J, Lio A, Salmeron M, Reichert A and Charych D 1995Science 269 515CrossRefGoogle Scholar
  3. Brown K R, Walter D G and Natan M J 2000Chem. Mater. 12 306CrossRefGoogle Scholar
  4. Chang S S, Shih C W, Chen C D, Lai W C and Wang CRC 1999Langmuir 15 701CrossRefGoogle Scholar
  5. Chen B-D, Cilliers J J, Davey R J, Garside J and Woodburn E T 1998J. Am. Chem. Soc. 120 1625CrossRefGoogle Scholar
  6. Chen C C, Chao C Y and Lang Z H 2000Chem. Mater. 12 1516CrossRefGoogle Scholar
  7. Chen S and Carroll D L 2002Nano Lett. 2 1003CrossRefGoogle Scholar
  8. Cho A Y 1999J. Cryst. Growth 202 1CrossRefGoogle Scholar
  9. Chung S-W, Markovich G and Heath J R 1998J. Phys. Chem. B102 6685Google Scholar
  10. El-Sayed M A 2001Acc. Chem. Res. 34 257CrossRefGoogle Scholar
  11. Esumi K, Matsuhisa K and Torigoe K 1995Langmuir 11 3285CrossRefGoogle Scholar
  12. Huang T and Murray R W 2001J. Phys. Chem. B105 12498Google Scholar
  13. Hu J T, Odom T W and Lieber C M 1999Acc. Chem. Res. 32 435CrossRefGoogle Scholar
  14. Jana N R, Gearhart L and Murphy C J 2001Chem. Commun. 617Google Scholar
  15. Jin R, Cao Y, Mirkin C A, Kelly K L, Schatz G C and Zheng J G 2001Science 294 1901CrossRefGoogle Scholar
  16. Jin R, Charles Cao Y, Hao E, Gabriella S M, George C S and Mirkin C A 2003Nature 425 487CrossRefGoogle Scholar
  17. Johnson C J, Dujardin E, Davis S A, Murphy C J and Mann S 2002J. Mater. Chem. 12 1765CrossRefGoogle Scholar
  18. Kamat P V 2002J. Phys. Chem. B106 7729Google Scholar
  19. Li M, Schnablegger H and Mann S 1999Nature 402 393CrossRefGoogle Scholar
  20. Maillard M, Giorgio S and Pileni M-P 2002Adv. Mater. 14 1084CrossRefGoogle Scholar
  21. Maillard M, Giorgio S and Pileni M P 2003J. Phys. Chem. B107 2466Google Scholar
  22. Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov N A and Liz-Marzan L M 2002Langmuir 18 3694CrossRefGoogle Scholar
  23. Murphy C J and Jana N R 2002Adv. Mater. 14 80CrossRefGoogle Scholar
  24. Nicewarner-Pena S Ret al 2001Science 294 137CrossRefGoogle Scholar
  25. Nikitenko S I, Koltypin Y, Mastai Y, Koltypin M and Gedanken A 2002J. Mater. Chem. 12 1450CrossRefGoogle Scholar
  26. Pastoriza-Santos I and Liz-Marzan L M 2002Nano Lett. 2 903CrossRefGoogle Scholar
  27. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadanavich A and Alivisatos A P 2000Nature 404 59CrossRefGoogle Scholar
  28. Pinna N, Weiss K, Urban J and Pileni M-P 2001Adv. Mater. 13 261CrossRefGoogle Scholar
  29. Qi L M, Ma J M, Cheng H M and Zhao Z G 1997J. Phys. Chem. B101 3460Google Scholar
  30. Sun Y G and Xia Y N 2002Adv. Mater. 14 833CrossRefGoogle Scholar
  31. Sun Y, Mayers B and Xia Y 2003Nano Lett. 3 675CrossRefGoogle Scholar
  32. Swami A, Kumar A, Selvakannan P R, Mandal S, Pasricha R and Sastry M 2003Chem. Mater. 15 17CrossRefGoogle Scholar
  33. Taleb A, Petit C and Pileni M P 1998J. Phys. Chem. B102 2214Google Scholar
  34. Tanori J and Pileni M P 1997Langmuir 13 639CrossRefGoogle Scholar
  35. Tan Y, Jiang L, Li Y and Zhu D 2002J. Phys. Chem. B106 3131Google Scholar
  36. van der Zande BMI, Bohmer M R, Fokkink L G J and Scho-nenberger C 1997J. Phys. Chem. B101 852Google Scholar
  37. Yener D O, Sindel J, Randall C A and Adair J H 2002Langmuir 18 8692CrossRefGoogle Scholar
  38. Yu Y Y, Chang S, Lee C J and Wang CRC 1997J. Phys. Chem. B101 6661Google Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Saikat Mandal
    • 1
  • Sujatha K. Arumugam
    • 1
  • Renu Pasricha
    • 1
  • Murali Sastry
    • 1
  1. 1.Materials Chemistry DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations