Bulletin of Materials Science

, Volume 24, Issue 2, pp 191–195 | Cite as

Densification and mechanical properties of mullite-SiC nanocomposites synthesized through sol-gel coated precursors

  • K. G. K. Warrier
  • G. M. Anil Kumar
  • S. Ananthakumar


Mullite-SiC nanocomposites are synthesized by introducing surface modified sol-gel mullite coated SiC particles in the matrix and densification and associated microstructural features of such precursor are reported. Nanosize SiC (average size 180 nm) surface was first provided with a mullite precursor coating which was characterized by the X-ray analysis and TEM. An average coating thickness of 120 nm was obtained on the SiC particles. The green compacts obtained by cold isostatic pressing were sintered in the range 1500–1700°C under pressureless sintering in the N2 atmosphere. The percentage of the theoretical sintered density decreases with increase in SiC content. A maximum sintered density of 97% was achieved for mullite-5 vol.% SiC. The fractograph of the sintered composite showed a highly dense, fine grained microstructure with the SiC particles uniformly distributed along the grains as well as at the grain boundaries inside the mullite. The Vicker’s microhardness of mullite-5 vol.% SiC composite was measured as 1320 kg/mm2 under an applied indentation load of 500 g. This value gradually decreased with an increase in SiC content.


Mullite-SiC nanocomposites sol-gel microstructure Vicker’s microhardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhaduri S and Bhaduri S B 1998J. Mater. 1 44Google Scholar
  2. Choa Y H, Niihara A and Niihara K 1994J. Am. Ceram. Soc. 77 3259CrossRefGoogle Scholar
  3. Hu C L and Rahaman M N 1992J. Am. Ceram. Soc. 75 2056CrossRefGoogle Scholar
  4. Hu C L and Rahaman M N 1993J. Am. Ceram. Soc. 76 2549CrossRefGoogle Scholar
  5. Kanpuri N, Rai K N and Upadhyaya G S 1996Ceram. Int. 106 14Google Scholar
  6. Kapolnek D and De Jonghe L C 1991J. Eur. Ceram. Soc. 7 345CrossRefGoogle Scholar
  7. Komerneni S 1992J. Mater. Chem. 2 1219CrossRefGoogle Scholar
  8. Mitchell T D and De Jonghe L C 1995J. Am. Ceram. Soc. 78 199CrossRefGoogle Scholar
  9. Niihara K 1991J. Ceram. Soc. Jpn. 99 974Google Scholar
  10. Pezzotti G and Saki M 1994J. Am. Ceram. Soc. 77 3039CrossRefGoogle Scholar
  11. Saka Y, Bidinger D D and Aksay I A 1995J. Am. Ceram. Soc. 78 479CrossRefGoogle Scholar
  12. Thompson A M, Chan H M, Harmer M P and Cook R F 1995J. Am. Ceram. Soc. 78 567CrossRefGoogle Scholar
  13. Warrier K G K, Hareesh U S, Anil Kumar G M and Damodaran A D 1996Ceram. Trans. 68 251Google Scholar
  14. Wang C M 1996J. Mater. Sci. 31 4709CrossRefGoogle Scholar
  15. Wang J, Ponton C B and Marquis P M 1996Scr. Mater. 34 935CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2001

Authors and Affiliations

  • K. G. K. Warrier
    • 1
  • G. M. Anil Kumar
    • 1
  • S. Ananthakumar
    • 1
  1. 1.Ceramics DivisionRegional Research LaboratoryThiruvananthapuramIndia

Personalised recommendations