, Volume 54, Issue 9, pp 31–34 | Cite as

Nanostructured ceramic and hybrid materials via electrodeposition

  • I. Zhitomirsky
  • A. Petric
  • M. Niewczas
Overview Nanomaterials


Electrodeposition is unique in that it can be used for processing metals, ceramics, and polymers. Electrochemical strategies offer important advantages and unique possibilities in the development of nanomaterials and nanostructures. Novel electrodeposition methods have evolved into an important branch of nanotechnology. This paper presents a brief overview of recent developments in the application of electrochemical methods for synthesis of nanostructured ceramic and hybrid materials.


Ceramic Coating Hybrid Film Colloidal Crystal Electrophoretic Deposition Electrolytic Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.S.J. Gani, “Electrophoretic Deposition—A Review,”Industrial Ceramics, 14 (1994), p. 163.Google Scholar
  2. 2.
    0. Vander Biest and L.J. Vandeperre, “Electrophoretic Deposition of Materials,”Annu. Rev. Mater. Sci., 29 (1999), p. 327.CrossRefGoogle Scholar
  3. 3.
    I. Zhitomirsky and L. Gal-Or, “Electrochemical Coatings,”Intermetallic and Ceramic Coatings, ed. Narendra B. Dahotre and T.S. Sudarshan (New York: Marcel Dekker, 1999), pp. 83–145.Google Scholar
  4. 4.
    G.H.A. Therese and P.V. Kamath, “Electrochemical Synthesis of Metal Oxides and Hydroxides,”Chem. Mater., 12 (2000), p. 1195.CrossRefGoogle Scholar
  5. 5.
    I. Zhitomirsky, “New Developments in Electrolytic Deposition of Ceramic Films,”Amer. Ceram. Soc. Bull., 79 (2000), p. 57.Google Scholar
  6. 6.
    I. Zhitomirsky, “Electrophoretic and Electrolytic Deposition of Ceramic Coatings on Carbon Fibers,”J. Europ. Ceram. Soc., 18 (1998), p. 849.CrossRefGoogle Scholar
  7. 7.
    I. Zhitomirsky, “Ceramic Films Using Cathodic Electrodeposition,”JOM-e, 52 (2000), JOM/0001/Zhitomirsky/Zhitomirsky-0001 .html.Google Scholar
  8. 8.
    I. Zhitomirsky and L. Gal-Or, “Electrophoretic Deposition of Hydroxyapatite,”J. Mater. Sci.:Mater. Med., 8 (1997), p. 213.CrossRefGoogle Scholar
  9. 9.
    I. Zhitomirsky, “Electrophoretic Hydroxyapatite Coatings and Fibers,”Mater. Lett., 42 (2000), p. 262.CrossRefGoogle Scholar
  10. 10.
    M. Shirkhanzadeh, “Direct Formation of Nanophase Hydroxyapatite on Cathodically Polarized Electrodes,”J. Mater. Sci., 9 (1998), p. 67.CrossRefGoogle Scholar
  11. 11.
    E.M. Wong and P.C. Searson, “Kinetics of Electrophoretic Deposition of Zinc Oxide Quantum Particle Thin Films,”Chem. Mater., 11 (1999), p. 1959.CrossRefGoogle Scholar
  12. 12.
    M. lzaki and T. Omi, “Characterization of Transparent Zinc Oxide Films Prepared by Electrochemical Reaction,”J. Electrochem. Soc., 144 (1997), p. 1949.CrossRefGoogle Scholar
  13. 13.
    S. Peulon and D. Lincot, “Cathodic Electrodeposition from Aqueous Solution of Dense or Open-Structured Zinc Oxide Films,”Adv, Mater., 8 (1996), p. 166.CrossRefGoogle Scholar
  14. 14.
    R. Liu et al., “Epitaxial Electrodeposition of Zinc Oxide Nanopillars on Single-Crystal Gold,”Chem. Mater., 13 (2001), p. 508.CrossRefGoogle Scholar
  15. 15.
    I. Zhitomirsky et al., “Electrodeposition of Ceramic Films from Non-Aqueous and Mixed Solutions,”J. Mater. Sci., 30 (1995), p. 5307.CrossRefGoogle Scholar
  16. 16.
    I. Zhitomirsky, “Cathodic Electrosynthesis of Titania Films and Powders,”Nanostructured Materials, 8 (1997), p. 521.CrossRefGoogle Scholar
  17. 17.
    I. Zhitomirsky and L. Gal-Or, “Cathodic Electrosynthesis of Ceramic Deposits,”J. Europ. Ceram. Soc., 16 (1996), p. 819.CrossRefGoogle Scholar
  18. 18.
    Y. Ishikawa and Y Matsumoto, “Electrodeposition of TiO2 Photocatalyst into Nano-Pores of Hard Alumite,”Electrochimica Acta, 46 (2001), p. 2819.CrossRefGoogle Scholar
  19. 19.
    E.W. Bohannan et al., “Low-Temperature Electrodeposition of the High-Temperature Cubic Polymorph of Bismuth (III) Oxide,”Solid State Ionics, 131 (2000), p. 97.CrossRefGoogle Scholar
  20. 20.
    J. Tamaki, G.K.L. Goh, and F.F. Lange, “Novel Epitaxial Growth of Barium Titanate Thin Films by Electrodeposition,”J. Mater. Res., 15 (2000), p. 2583.Google Scholar
  21. 21.
    I. Zhitomirsky and L. Gal-Or, “Ruthenium Oxide Deposits Prepared by Cathodic Electrosynthesis,”Mater. Lett., 31 (1997), p. 155.CrossRefGoogle Scholar
  22. 22.
    I. Zhitomirsky, “Electrolytic Deposition of Oxide Films in the Presence of Hydrogen Peroxide,”J. Europ. Ceram. Soc., 19 (1999), p. 2581.CrossRefGoogle Scholar
  23. 23.
    S.J. Limmer et al., “Template-Based Growth of Various Oxide Nanorods by Sol-Gel Electrophoresis,”Adv. Fund. Mater., 12 (2002), p. 59.CrossRefGoogle Scholar
  24. 24.
    R. Chaim, I. Silberman, and L. Gal-Or, “Electrolytic ZrO2 Coatings II: Microstructural Aspects,”J. Electrochem. Soc., 138 (1991), p. 1942.CrossRefGoogle Scholar
  25. 25.
    I. Zhitomirsky and L. Gal-Or, “Characterization of Zirconium, Lanthanum and Lead Oxide Deposits Prepared by Cathodic Electrosynthesis,”J. Mater. Sci., 33 (1998), p. 699.CrossRefGoogle Scholar
  26. 26.
    A.R. Boccaccini, U. Schindler, and H.-G. Krüger, “Ceramic Coatings on Carbon and Metallic Fibres by Electrophoretic Deposition,”Mater. Lett, 51 (2001), p. 225.CrossRefGoogle Scholar
  27. 27.
    L. Gal-Or, S. Liubovich, and S. Haber, “Deep Electrophoretic Penetration and Deposition of Ceramic Particles Inside Porous Substrates II: Experimental Model,”J. Electrochem. Soc., 139 (1992), p. 1078.CrossRefGoogle Scholar
  28. 28.
    A.R. Boccaccini et al., “Colloidal Processing of a Mullite Matrix Material Suitable for Infiltrating Woven Fibre Preforms Using Electrophoretic Deposition,”J. Europ. Ceram. Soc., 16 (1996), p. 1319.CrossRefGoogle Scholar
  29. 29.
    A.R. Boccaccini and P.A. Trusty, “Electrophoretic Deposition Infiltration of Metallic Fabrics with a Boehmite Sol for the Preparation of Ductile-Phase-Toughened Ceramic Composites,”J. Mater. Sci., 33 (1998), p. 933.CrossRefGoogle Scholar
  30. 30.
    C. Kaya, A.R. Boccaccini, and K.K. Chawla, “Electrophoretic Deposition Forming of Nickel-Coated-Carbon-Fiber-Reinforced Borosilicate-Glass-Matrix Composites,”J. Amer. Ceram. Soc., 83 (2000), p. 1885.CrossRefGoogle Scholar
  31. 31.
    P.E. de Jongh, D. Vanmaekelbergh, and J.J. Kelly, “Cu2O: Electrodeposition and Characterization,”Chem. Mater., 11 (1999), p. 3512.CrossRefGoogle Scholar
  32. 32.
    Z.-Z. Gu et al., “Fabrication of Structured Porous Film by Electrophoresis,”J. Amer. Chem. Soc., 123 (2001), p. 175.CrossRefGoogle Scholar
  33. 33.
    T. Sumida et al., “Macroporous ZnO Films Electrochemically Prepared by Templating of Opal Films,”Chem. Lett, (2001), p. 38.Google Scholar
  34. 34.
    B. O’Regan, V. Sklover, and M. GrÄtzel, “Electrochemical Deposition of Smooth and Homogeneously Mesoporous ZnO Films from Propylene Carbonate Electrolytes,”J. Electrochem. Soc., 148 (2001), p. C498.CrossRefGoogle Scholar
  35. 35.
    J.A. Switzer, M.J. Shane, and R.J. Phillips, “Electrodeposited Ceramic Superlattices,”Science, 247 (1990), p. 444.CrossRefGoogle Scholar
  36. 36.
    J.A. Switzer et al., “Scanning Tunneling Microscopy of Electrodeposited Ceramic Superlattices,”Science, 258 (1992), p. 1918.CrossRefGoogle Scholar
  37. 37.
    R.J. Phillips et al., “Electrodeposition of Textured Ceramic Superlattices in the Pb-TI-0 System,”Chem. Mater., 9 (1997), p. 1670.CrossRefGoogle Scholar
  38. 38.
    J.A. Switzer et al., “Electrodeposited Defect Chemistry Superlattices,”Science, 264 (1994), p. 1573.CrossRefGoogle Scholar
  39. 39.
    Y-C. Wang, I.-C. Leu, and M.-H. Hon, “Preparation of Nanosized ZnO Arrays by Electrophoretic Deposition,”Electrochem. Solid-State Lett, 5 (2002), p. C53.CrossRefGoogle Scholar
  40. 40.
    X. Zhang et al., “Electrochemical Fabrication of Single-Crystalline Anatase TiO2 Nanowire Arrays,”J. Electrochem. Soc., 148 (2001), p. G398.CrossRefGoogle Scholar
  41. 41.
    R. Chaim, “Fabrication and Characterization of Nanocrystalline Oxides by Crystallization of Amorphous Precursors,”Nanostructured Materials, 1 (1992), p. 479.CrossRefGoogle Scholar
  42. 42.
    Y. Zhou, R.J. Phillips, and J.A. Switzer, “Electrochemical Synthesis and Sintering of Nanocrystalline Cerium (IV) Oxide Powders,”J. Amer. Ceram. Soc., 78 (1995), p. 981.CrossRefGoogle Scholar
  43. 43.
    A. Mukherjee, D. Harrison, and E.J. Podlaha, “Electrosynthesis of Nanocrystalline Ceria-Zirconia,”Electrochem. Solid-State Lett., 4 (2001), p. D5.CrossRefGoogle Scholar
  44. 44.
    F. Torres et al., “Electrochemical Route for the Synthesis of New Nanostructured Magnetic Mixed Oxides of Mn, Zn, and Fe from an Acidic Chloride and Nitrate Medium,”Chem. Mater., 12 (2000), p. 3060.CrossRefGoogle Scholar
  45. 45.
    A. Dierstein et al., “Electrochemical Deposition Under Oxidizing Conditions (EDOC): A New Synthesis for Nanocrystalline Metal Oxides,”Scripta Mater., 44 (2001), p. 2209.CrossRefGoogle Scholar
  46. 46.
    I. Zhitomirsky and A. Petric, “Fabrication of Organoceramic Films by Electrodeposition,”Amer. Ceram. Soc. Bull., 80 (2001), p. 41.Google Scholar
  47. 47.
    I. Zhitomirsky and A. Petric, “Cathodic Electrodeposition of Polymer Films and Organoceramic Films,”Mater. Sci. Eng., B78 (2000), p. 125.CrossRefGoogle Scholar
  48. 48.
    I. Zhitomirsky and A. Petric, “Electrolytic Deposition of Gd2O3 and Organoceramic Composite,”Mater. Lett., 42 (2000), p. 273.CrossRefGoogle Scholar
  49. 49.
    1. Zhitomirsky and A. Petric, “Electrolytic Deposition of Zirconia and Zirconia Organoceramic Composites,”Mater. Lett., 46 (2000), p. 1.CrossRefGoogle Scholar
  50. 50.
    I. Zhitomirsky and A. Petric, “Electrochemical Deposition of Ceria and Doped Ceria Films,”Ceramics International, 27 (2001), p. 149.CrossRefGoogle Scholar
  51. 51.
    I. Zhitomirsky, M. Niewczas, and A. Petric, “Electrodeposition of Hybrid Organic-Inorganic Films Containing Iron Oxide,”Mater. Lett, in press.Google Scholar
  52. 52.
    I. Zhitomirsky and A. Petric, “Nanostructured Polymer-Ceramic Films Prepared by Combined Electrolytic-Electrophoretic Deposition,”Proceedings of the International Conference on Electrophoretic Deposition (Banff, Canada: United Engineering Foundation, 2002), submitted.Google Scholar
  53. 53.
    B. Feng et al., “Electropolymerization of Polyaniline/ Montmorillonite Nanocomposite,”J. Mater. Sci. Lett., 20 (2001), p. 293.CrossRefGoogle Scholar
  54. 54.
    J.A. Switzer et al., “Potential Oscillations During the Electrochemical Self-Assembly of Copper/Cuprous Oxide Layered Nanostructures,”J. Mater. Res., 13 (1998), p. 909.Google Scholar
  55. 55.
    J.A. Switzer et al., “Negative Differential Resistance in Electrochemically Self-Assembled Layered Nanostructures,”J.Phys. Chem., B103 (1999), p. 395.Google Scholar
  56. 56.
    S. Kenane and L. Piraux, “Electrochemical Self-Assembly of Cu/Cu2O Nanowires,”J. Mater. Res., 17 (2002), p. 401.CrossRefGoogle Scholar
  57. 57.
    T. Yoshino et al., “Preparation of ZnO/Au Nanocomposite Thin Films by Electrodeposition,”Jpn. J. Appl. Phys., 35 (1996), p. L1512.CrossRefGoogle Scholar
  58. 58.
    P.K. Shen and A.C.C. Tseung, “Anodic Oxidation of Methanol on Pt/WO3 in Acidic Media,”J. Electrochem. Soc., 141 (1994), p. 3082.CrossRefGoogle Scholar
  59. 59.
    P.M. Vereecken, I. Shao and PC. Searson, “Particle Codeposition in Nanocomposite Films,”J. Electrochem. Soc., 147 (2000), p. 2572.CrossRefGoogle Scholar
  60. 60.
    S. Banerjee et al., “Magnetic Properties of Oxide-Coated Iron Nanoparticles Synthesized by Electrodeposition,”J. Magn. Magn. Mater., 219 (2000), p. 45.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals, & Materials Society 2002

Authors and Affiliations

  • I. Zhitomirsky
    • 1
  • A. Petric
    • 1
  • M. Niewczas
    • 1
  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations