Advertisement

Journal of Chemical Sciences

, Volume 114, Issue 6, pp 687–696 | Cite as

Interaction between an 8-methoxypyrimido[4′,5′:4,5] thieno (2,3-b)quinoline-4(3H)one antitumour drug and deoxyribonucleic acid

  • M. Gopal
  • M. S. Shahabuddin
  • Sanjeev R. Inamdar
Article

Abstract

The interaction of 8-methoxypyrimido[4′,5′:4,5]thieno(2,3-b)quinoline-4(3H)one (MPTQ) with DNA was studied by UV-Vis and fluorescence spectrophotometry as well as by hydrodynamic methods. On binding to DNA, the absorption spectrum underwent bathochromic and hypochromic shifts and the fluorescence was quenched. Binding parameters, determined from spectrophotometric measurements by Scatchard analysis, indicated a binding constant of 3.56 × 106 M−1 for calf thymus DNA at ionic strength 0.01 M. Binding to the GC-rich DNA ofMicrococcus lysodeikticus was stronger than the binding to calf thymus DNA at ionic strength 0.01 M. The MPTQ increased the viscosity of sonicated rod-like DNA fragments, producing a calculated length of 2.4Å/bound MPTQ molecule. The binding of MPTQ to DNA increased the melting temperature by about 4 °C. This research offers a new intercalation functional group to DNA targetted drug design.

Keywords

DNA intercalative binding 8-methoxy pyrimido[4′,5′:4,5]thieno(2,3-b) quinoline-4(3H)one fluorescence quenching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dalton L K, Demerac S C, Elmes B C, Loder J W, Swan J M and Teitei T 1967Aust. J. Chem. 20 2715CrossRefGoogle Scholar
  2. 2.
    Svoboda G H, Poore G A and Montfort M Z 1968J. Pharmacol. Sci. 57 1720CrossRefGoogle Scholar
  3. 3.
    Hartwell J L and Abbot B J 1969 Antineoplastic principles in plants: recent developments in the field. InAdvances in pharmacology and chemotherapy 7th edn (eds) S Garrattini, A Goldin, F Hawking and I J Kopin (New York: Academic Press) p. 117Google Scholar
  4. 4.
    Gatto B, Capranico G and Palumbo M 1999Curr. Pharmacol. Design 5 195Google Scholar
  5. 5.
    Sainsburry M 1977Synthesis 7 437CrossRefGoogle Scholar
  6. 6.
    Allard B, Jouini M, Bistocchi G A, Orvietani P L, Ricci A, Lescot E and Schwaller A 1995J. Chem. Res. 1314Google Scholar
  7. 7.
    Baez A, Gonzalez F A, Vazquez D and Waring M 1983Biochem. Pharmacol. 32 2089CrossRefGoogle Scholar
  8. 8.
    Cao Y and He W X 1998Spectrochim. Acta A54 883Google Scholar
  9. 9.
    Singh M P, Joseph T, Kumar S and Lown J W 1992Chem. Res. Toxicol. 5 597CrossRefGoogle Scholar
  10. 10.
    Tilak Raj T and Ambekar S Y 1988J. Chem. Res. 50 537Google Scholar
  11. 11.
    Barton J K, Goldberg J M and Kumar C V 1986J. Am. Chem. Soc. 108 2081CrossRefGoogle Scholar
  12. 12.
    Scatchard G 1949Ann. NYAcad. Sci. 51 660CrossRefGoogle Scholar
  13. 13.
    Peacocke A R and Skerrett J N H 1956Trans. Faraday Soc. 52 261CrossRefGoogle Scholar
  14. 14.
    McGhee J D and von Hippel D H 1974J. Mol. Biol. 86 496CrossRefGoogle Scholar
  15. 15.
    Blake A and Peacocke A R 1968Biopolymers 6 1225CrossRefGoogle Scholar
  16. 16.
    Wakelin LPG, Ramonas M, Chen T K, Glaubiger D, Canellakis E S and Waring M J 1978Biochemistry 17 5057CrossRefGoogle Scholar
  17. 17.
    Cohen G and Eisenberg H 1969Biopolymers 8 45CrossRefGoogle Scholar
  18. 18.
    Crothers D M and Zimm B H 1965J. Mol. Biol. 12 525CrossRefGoogle Scholar
  19. 19.
    Long E C and Barton J K 1990Acc. Chem. Res. 23 271CrossRefGoogle Scholar
  20. 20.
    Yang J P 1991Introduction of bioinorganic chemistry (in Chinese) (Xi An: Xi An Jiao Tong University Publishers) p. 152Google Scholar
  21. 21.
    Chen G Z, Huang X Z, Xu J G, Zheng Z Z and Wang Z B 1990The analytical method of fluorescence (in Chinese) (Beijing: Science Publishers) p. 118Google Scholar
  22. 22.
    Waring M J 1981Annu. Rev. Biochem. 50 159CrossRefGoogle Scholar
  23. 23.
    Mee S L, Pierre A, Markovits J, Atassi G, Sablon A J and Saucier J M 1998Mol. Pharmacol. 53 213Google Scholar
  24. 24.
    Maiti M, Nandi R and Chauduri K 1984Indian J. Biochem. Biophys. 21 158Google Scholar
  25. 25.
    Laure L, Christian R, Gabriel M, Paoletti C, Bisagni E and Paoletti J 1988J. Med. Chem. 31 1951CrossRefGoogle Scholar
  26. 26.
    Patel D J 1979Acc. Chem. Res. 12 118CrossRefGoogle Scholar
  27. 27.
    Zuby G L 1988Biochemistry 2nd edn (New York: McMillan) p. 236Google Scholar
  28. 28.
    McCoubery A, Latham H C, Cook P R, Rodger A and Lowe G 1996FEBS Lett. 380 73CrossRefGoogle Scholar
  29. 29.
    Schwaller M A, Aubard J, Auclair Paoletti C and Dodin G 1989Eur. J. Biochem. 181 129CrossRefGoogle Scholar
  30. 30.
    Schwaller M A, Aubard J and Dodin G 1988J. Biomol. Struct. Dyn. 6 443Google Scholar
  31. 31.
    Waring M J, Gonazalez A, Jimenez A and Vazquez D 1979Nucleic Acids Res. 7 217CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2002

Authors and Affiliations

  • M. Gopal
    • 1
  • M. S. Shahabuddin
    • 1
  • Sanjeev R. Inamdar
    • 2
  1. 1.Department of Studies in BiochemistryKuvempu UniversityDavanagereIndia
  2. 2.Laser Spectroscopy, Department of PhysicsKarnatak UniversityDharwadIndia

Personalised recommendations