Journal of Chemical Sciences

, Volume 113, Issue 5–6, pp 497–514 | Cite as

Infrared and Raman spectroscopic studies of glasses with NASICON-type chemistry

  • K. J. Rao
  • K. C. Sobha
  • Sundeep Kumar


Structures of NASICON glasses of the general formula AB2(PO4)3, where A = Li, Na or K and B = Fe, Ga, Ti, V or Nb, have been investigated using vibrational (IR and Raman) spectroscopies. Phosphate species appear to establish an equilibrium via a disproportionation reaction involving a dynamical bond-switching mechanism where both charge and bonds are conserved. B ions in the system acquire different coordinations to oxygens. Alkali ions cause absorptions due to cage vibrations. All the observed spectroscopic features are consistent with speciation involving disproportionation reactions.


NASICON glasses dynamical bond-switching mechanism dispropor-tionation reactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hong H Y-P 1976Mater. Res. Bull. 11 173CrossRefGoogle Scholar
  2. 2.
    Goodenough J B, Hong H Y-P and Kafalas J A 1976Mater. Res. Bull. 11 203CrossRefGoogle Scholar
  3. 3.
    Veríssimo C, Garrido F M S, Alves O L, Paloma Calle, Martínez-Juárez A, Iglesias J E and Rojo J M 1997Solid State Ionics 100 127CrossRefGoogle Scholar
  4. 4.
    Prakash G V, Nachimuthu P, Vithal M and Jagannathan R 1999Bull. Mater. Sci. 22 121CrossRefGoogle Scholar
  5. 5.
    Catti M 2001J. Solid State Chem. 156 305CrossRefGoogle Scholar
  6. 6.
    Sobha K C and Rao K J 1995Solid State Ionics 81 145CrossRefGoogle Scholar
  7. 7.
    Sobha K C and Rao K J 1995Proc. Indian Acad. Sci. (Chem. Sci.) 107 573Google Scholar
  8. 8.
    Sobha K C and Rao K J 1996J. Non-Cryst. Solids 201 52CrossRefGoogle Scholar
  9. 9.
    Sobha K C and Rao K J 1996J. Phys. Chem. Solids 57 1263CrossRefGoogle Scholar
  10. 10.
    Sobha K C and Rao K J 1996J. Solid State Chem. 121 197CrossRefGoogle Scholar
  11. 11.
    Boilot J P, Collin G and Comes R 1983J. Solid State Chem. 50 91CrossRefGoogle Scholar
  12. 12.
    Muthupari S and Rao K J 1994Chem. Phys. Lett. 223 133CrossRefGoogle Scholar
  13. 13.
    El Jazouli A, Parent C, Dance J M, Le Flem G, Hegenmuller P and Viala J C 1988J. Solid State Chem. 74 377CrossRefGoogle Scholar
  14. 14.
    Tarte P, Rulmont A, Liégeois-Duyckaerts M, Cahay R and Winand J M 1990Solid State Ionics 42 177CrossRefGoogle Scholar
  15. 15.
    Krimi S, El Jazouli A, Rabardel L, Couzi M, Mansouri I and Flem G Le 1993J. Solid State Chem. 102 400CrossRefGoogle Scholar
  16. 16.
    Wang B, Greenblatt M and Yan J 1994Solid State Ionics 69 85CrossRefGoogle Scholar
  17. 17.
    Berthet P, Bretey E, Berthon J, Yviore F d’, Belkebir A, Rulmont A and Gilbert B 1994Solid State Ionics 70/71 476CrossRefGoogle Scholar
  18. 18.
    Hagman L and Kierkegaard P 1968Actachem. Scand. 22 1822CrossRefGoogle Scholar
  19. 19.
    Barj M, Perthuis H and Colomban Ph 1983Solid State Ionics 9&10 845CrossRefGoogle Scholar
  20. 20.
    Barj M, Perthuis H and Colomban Ph 1983Solid State Ionics 9&10 157CrossRefGoogle Scholar
  21. 21.
    Tarte P, Rulmont A and Merckaert-Ansay C 1986Spectrochim. Acta A42 1009Google Scholar
  22. 22.
    Rochère M de la, Yvoire F d’, Collin G, Comès R and Boilot J P 1983Solid State Ionics 9&10 825Google Scholar
  23. 23.
    Corbridge D E C and Lowe E J 1954J. Chem. Soc. 493Google Scholar
  24. 24.
    Exarhos G J and Risen W M Jr. 1972Solid State Commun. 11 755CrossRefGoogle Scholar
  25. 25.
    Exarhos G J, Miller P J and Risen W M Jr. 1974J. Chem. Phys. 60 4145CrossRefGoogle Scholar
  26. 26.
    Osaka A, Takahashi K and Ikeda M 1984J. Mater. Sci. 3 36Google Scholar
  27. 27.
    Wong J and Angell C A1976Glass structure by spectroscopy (New York: Marcel Dekker)Google Scholar
  28. 28.
    Moguš-Milanko’vic A, Pivac B, Fúric and Day D E 1997Phys. Chem. Glasses 38 74Google Scholar
  29. 29.
    Pivac B, Moguš-Milanko’vic A and Day D E 1998J. Non-Cryst. Solids 226 41CrossRefGoogle Scholar
  30. 30.
    Botto I L and Minelli G 1986J. Phys. Chem. Solids 47 259CrossRefGoogle Scholar
  31. 31.
    Sanderson R T 1983Polar covalence (New York: Academic Press)Google Scholar
  32. 32.
    Sales B C and Chakoumakos B C 1993J. Solid State Chem. 105 406CrossRefGoogle Scholar
  33. 33.
    Sakka S, Kozuka H, Fukumi K and Miyaji F 1990J. Non-Cryst. Solids 123 176CrossRefGoogle Scholar
  34. 34.
    Tourtin F, Armand P, Ibanez A, Manteghetti A and Philippot E 1997Thin Solid Films 307 43CrossRefGoogle Scholar
  35. 35.
    Tourtin F, Armand P, Ibanez A, Tourillon G and Philippot E 1998Thin Solid Films 322 85CrossRefGoogle Scholar
  36. 36.
    Nishida T, Shiotsuki T and Takashima Y 1981J. Non-Cryst. Solids 43 115CrossRefGoogle Scholar
  37. 37.
    Nelson C and Tallant D R 1985Phys. Chem. Glasses 26 119Google Scholar
  38. 38.
    Nelson B N and Exarhos G J 1979J. Chem. Phys. 71 2739CrossRefGoogle Scholar
  39. 39.
    Gabelica-Robert M and Tarte P 1982J. Mol. Struct. 79 251CrossRefGoogle Scholar
  40. 40.
    Ananthraj S and Rao K J 1991Proc. Indian Acad. Sci. (Chem. Sci.) 103 655Google Scholar
  41. 41.
    Bobovich Ya S 1962Opt. Spectrosc. 13 274Google Scholar
  42. 42.
    Furukawa T and White W B 1979Phys. Chem. Glasses 20 69Google Scholar
  43. 43.
    Verweij H and Buster J H J M 1979J. Non-Cryst. Solids 34 81CrossRefGoogle Scholar
  44. 44.
    Kumar S, Murugavel S and Rao K J 2001J. Phys. Chem. B105 5862Google Scholar
  45. 45.
    Muthupari S, Prabakar S and Rao K J 1994J. Phys. Chem. 98 2646CrossRefGoogle Scholar
  46. 46.
    Prabakar S, Rao K J and Rao C N R 1991J. Mater. Res. 6 285Google Scholar
  47. 47.
    Prabakar S, Rao K J and Rao C N R 1991Mater. Res. Bull. 26 805CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2001

Authors and Affiliations

  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations