Advertisement

Journal of Chemical Sciences

, Volume 118, Issue 1, pp 105–115 | Cite as

Inclusion of poly-aromatic hydrocarbon (PAH) molecules in a functionalized layered double hydroxide

  • L. Mohanambe
  • S. Vasudevan
Article

Abstract

The internal surface of an Mg-Al layered double hydroxide has been functionalized by anchoring carboxy-methyl derivatized β-cyclodextrin cavities to the gallery walls. Neutral polyaromatic hydrocarbon (PAH) molecules have been included within the functionalized solid by driving the hydrophobic aromatic molecules from a polar solvent into the less polar interior of the anchored cyclodextrin cavities by a partitioning process. The optical (absorption and emission) properties of the PAH molecules included within the functionalized Mg-Al layered double hydroxide solid are similar to that of dilute solutions of the PAH in non-polar solvents. The unique feature of these hybrid materials is that they are thermally stable over a wide temperature range with their emission properties practically unaltered.

Keywords

Layered double hydroxide polyaromatic hydrocarbon molecules thermal emission properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whittingham M S 1982Intercalation chemistry (New York: Academic Press)Google Scholar
  2. 2.
    Alberti G and Costantino U 1996Comprehensive supramolecular chemistry (Chichester: Wiley) vol 7, p. 1Google Scholar
  3. 3.
    Gluech D S, Brough A R, Mountford P and Green M L H 1993Inorg. Chem. 32 1893CrossRefGoogle Scholar
  4. 4.
    Aranda P and Hitzky R 1990Adv. Mater. 2 545CrossRefGoogle Scholar
  5. 5.
    Jeevanandam P and Vasudevan S 1998Chem. Mater. 10 1276CrossRefGoogle Scholar
  6. 6.
    Ogawa M and Kuroda K 1997Bull. Chem. Soc. Jpn. 70 2593CrossRefGoogle Scholar
  7. 7.
    Venkataraman N V, Mohanambe L and Vasudevan S 2003J. Mater. Chem. 13 170CrossRefGoogle Scholar
  8. 8.
    Venkataraman N V and Vasudevan S 2003J. Phys. Chem. B107 5371Google Scholar
  9. 9.
    Wouter L and Pinnavaia T J 2001Green Chemistry 3 10CrossRefGoogle Scholar
  10. 10.
    Venkataraman N V and Vasudevan S 2003J. Phys. Chem. B107 10119Google Scholar
  11. 11.(a)
    Vogtle F 1991Supramolecular chemistry (Chichester: Wiley);Google Scholar
  12. 11.(b)
    Steed J W and Atwood J L 2000Supramolecular chemistry (Chichester: Wiley)Google Scholar
  13. 12.
    Kijima T, Tanaka J, Goto M and Matsui Y 1984Nature (London)310 45CrossRefGoogle Scholar
  14. 13.
    Kijima T and Matsui Y 1986Nature (London) 322 533CrossRefGoogle Scholar
  15. 14.(a)
    Zhao H and Vance G F 1997J. Chem. Soc., Dalton. Trans. 11 1961;CrossRefGoogle Scholar
  16. 14.(b)
    Zhao H and Vance G F 1998J. Inclusion Phenom. 31 305;CrossRefGoogle Scholar
  17. 14.(c)
    Zhao H and Vance G F 1998Clays Clay Miner. 46 712CrossRefGoogle Scholar
  18. 15.
    Mohanambe L and Vasudevan S 2005Langmuir 21 10735CrossRefGoogle Scholar
  19. 16.(a)
    Fujiki M, Deguchi T and Sanamesa I 1988Bull. Chem. Soc. Jpn. 61 1163;CrossRefGoogle Scholar
  20. 16.(b)
    Patonay G, Shapira A, Diamond P and Warner I M 1986J. Phys. Chem. 90 1963;CrossRefGoogle Scholar
  21. 16.(c)
    Shixiang G, Liansheng W, Qingguo H and Sukui H 1998Chemosphere 37 1299CrossRefGoogle Scholar
  22. 17.
    Connors K A 1996Comprehensive supramolecular chemistry (eds) J Szejtli J and T Osa (London: Pergamon) vol 3, p. 234Google Scholar
  23. 18.
    Khan I K and Hare D O 2002J. Mater. Chem. 12 3191CrossRefGoogle Scholar
  24. 19.
    Constantino V R L and Pinnavaia T J 1995Inorg. Chem. 34 883CrossRefGoogle Scholar
  25. 20.
    Miyata S 1977Clays. Clay. Miner. 25 14CrossRefGoogle Scholar
  26. 21.
    Miyata S 1983Clays. Clay. Miner. 31 305CrossRefGoogle Scholar
  27. 22.
    Miyata S 1975Clays. Clay. Miner. 23 369CrossRefGoogle Scholar
  28. 23.
    De Roy A, Forano C, El Malki K and Bessi J P 1992Expanded clays and other microporous solids (eds) M L Occelli and H E Robson (New York: Van Nostrand Reinhold) vol 2, p. 108Google Scholar
  29. 24.
    Cavani F, Trifiró F and Vaccari A 1991Catal. Today 11 173CrossRefGoogle Scholar
  30. 25.
    Newman S and Jones W 1998New J. Chem. 22 105CrossRefGoogle Scholar
  31. 26.
    Vaccari A 1999Appl. Clay Sci. 14 161CrossRefGoogle Scholar
  32. 27.
    Rives V and Ulibarri M 1999Coord. Chem. Rev. 181 61CrossRefGoogle Scholar
  33. 28.
    Choy J H, Kwak S Y, Park J S, Jeong Y J and Portier J 1999J. Am. Chem. Soc. 121 1399CrossRefGoogle Scholar
  34. 29.
    Choy J H, Kwak S Y, Jeong Y J and Park J S 2000Angew. Chem., Int. Ed. 39 4042CrossRefGoogle Scholar
  35. 30.
    Mohanambe L and Vasudevan S 2005Inorg. Chem. 44 2128CrossRefGoogle Scholar
  36. 31.
    Mohanambe L and Vasudevan S 2005J. Phys. Chem. B109 11865Google Scholar
  37. 32.
    Mohanambe L and Vasudevan S 2005J. Phys. Chem. B109 22523Google Scholar
  38. 33.
    Mohanambe L and Vasudevan S 2004Inorg. Chem. 43 6421CrossRefGoogle Scholar
  39. 34.
    Meyn M, Beneke K and Lagaly G 1990Inorg. Chem. 29 5201CrossRefGoogle Scholar
  40. 35.
    Kalyanasundaram K and Thomas J K 1977J. Am. Chem. Soc. 99 2039CrossRefGoogle Scholar
  41. 36.(a)
    Koyanagi M 1968J. Mol. Spectrosc. 25 273;CrossRefGoogle Scholar
  42. 36.(b)
    Robinson G W 1967J. Chem. Phys. 46 572CrossRefGoogle Scholar
  43. 37.
    Valeur B 2001Molecular fluorescence: Principles and applications (Weinheim, Berlin: Wiley-VCH Verlag)Google Scholar
  44. 38.
    Cary T C, Louis J P and Virgil H F 1979Science 206 831CrossRefGoogle Scholar
  45. 39.
    Birks J B 1970Photophysics of aromatic molecules (New York: John-Wiley and Sons)Google Scholar
  46. 40.
    Matsui K 1992Langmuir 8 673CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangalore

Personalised recommendations