Advertisement

Journal of Chemical Sciences

, Volume 113, Issue 4, pp 343–350 | Cite as

Reduction of CO2 by nickel (II) macrocycle catalyst at HMDE

  • M. Aulice Scibioh
  • P. V. Ragini
  • S. Rani
  • V. R. Vijayaraghavan
  • B. Viswanathan
Article

Abstract

With the aim of finding a suitable electrocatalyst for the efficient reduction of carbon dioxide, the electrochemistry of nickel (II) complex of 1,3,6,9,11,14-hexaazatricyclo [12·2·1·1] octadecane was studied using cyclic voltammetry (CV) and controlled-potential electrolysis (CPE) techniques in the presence and absence of CO2 in 100% H2O, CH3CN-H2O mixtures (20–100%) and DMF-H2O (70–100%) mixtures. The efficiency of this process is determined using the coulometry technique. CO is the major product in the gaseous phase and HCOOH the sole product formed in the solution phase.

Keywords

Nickel (II) azamacrocycle electrocatalytic reduction of CO2 electrochemical reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beley M, Collin J P, Ruppert R and Sauvage J P 1984J. Chem. Soc., Chem. Commun. 1315Google Scholar
  2. 2.
    Balazs GB and Anson F C 1993J. Electroanal. Chem. 149Google Scholar
  3. 3.
    Tezuka M and Iwashi 1993Chem. Lett. 955Google Scholar
  4. 4.
    Bhugun I, Lexa D and Saveant J M 1994J. Am. Chem. Soc. 116 5015CrossRefGoogle Scholar
  5. 5.
    Nagao H, Mizukawa and Tanaka K 1993Chem. Lett. 955Google Scholar
  6. 6.
    Seshadri G, Lin C and Bocarsly A B 1994J. Electroanal. Chem. 372 145CrossRefGoogle Scholar
  7. 7.
    Arana C, Keshavarz M, Potts K T and Abruna H D 1994Inorg. Chem. Acta 225 285CrossRefGoogle Scholar
  8. 8.
    Yoshida T, Iida T, Shirasagi T, Lin R J and Kaneko M 1993J. Electroanal. Chem. 344 355CrossRefGoogle Scholar
  9. 9.
    Ogura K, Mine K, Yano J and Sugihara M 1993J. Chem. Soc., Chem. Commun. 20Google Scholar
  10. 10.
    Ogura K, Sugihara H, Yano J and Higasa M 1994J. Electrochem. Soc. 141 419CrossRefGoogle Scholar
  11. 11.
    Ogura K, Higasa M, Yano J and Endo N 1994J. Electroanal. Chem. 379 373CrossRefGoogle Scholar
  12. 12.
    Ogura K, Endo N, Nakayama M and Ootsuka H 1995J. Electrochem. Soc. 142 4026CrossRefGoogle Scholar
  13. 13.
    Ikeda S, Tagaki T and Ito K 1987Bull. Chem. Soc. Jpn. 60 2517CrossRefGoogle Scholar
  14. 14.
    Sullivan B P, Krist K and Guart H E (eds) 1993Electrochemical and electrocatalytic reactions of carbon dioxide (Amsterdam: Elsevier)Google Scholar
  15. 15.
    Behr A 1988Carbon dioxide activation by metal complexes (New York: VCH)Google Scholar
  16. 16.
    Hammouche M, Lexa D, Momenteau M and Saveant J M 1981J. Am. Chem. Soc. 113 8455CrossRefGoogle Scholar
  17. 17.
    Amatore C and Saveant J M 1981J. Am. Chem. Soc. 103 5021CrossRefGoogle Scholar
  18. 18.
    Kubiak C P and Ratliff K S 1991Israel J. Chem. 31 3Google Scholar
  19. 19.
    Ratliff K S, Lentz R E and Kubiak C P 1992Organometallics 11 1986CrossRefGoogle Scholar
  20. 20.
    Tominaga K, Sasaki Y, Kawai M, Watanabe T and Saito M 1993J. Chem. Soc., Chem. Commun. 629Google Scholar
  21. 21.
    Bolinger C M, Sullivan B P, Conrad D, Gilbert J A, Story N and Meyer T J 1985J. Chem. Soc., Chem. Commun. 796Google Scholar
  22. 22.
    Bolinger C M, Story N, Sullivan B P and Meyer T J 1988Inorg. Chem. 27 4582CrossRefGoogle Scholar
  23. 23.
    Bruce M R M, Megehee E, Sullivan B P, Thorp H, O’Toole T R, Downard A and Meyer T J 1988Organometallics 7 238CrossRefGoogle Scholar
  24. 24.
    Bruce M R M, Megehee E, Sullivan B P, Thorp H H, O’Toole T R, Downard A, Pugh J R and Meyer T J 1992Inorg. Chem. 31 4864CrossRefGoogle Scholar
  25. 25.
    Pugh J R, Bruce M R M, Sullivan B P and Meyer T J 1991Inorg. Chem. 30 86CrossRefGoogle Scholar
  26. 26.
    Hori Y, Wakebe H, Tsukamoto T and Koga O 1994Electrochim. Acta 39 1833CrossRefGoogle Scholar
  27. 27.
    Szymaszek A and Pruchnik F P 1989J. Organomet. Chem. 376 133CrossRefGoogle Scholar
  28. 28.
    Ogura K, Migita C T and Nagaoka T 1989J. Mol. Catal. 56 276CrossRefGoogle Scholar
  29. 29.
    Ogura K, Migita C T and Wadaka K 1991J. Mol. Catal. 67 161CrossRefGoogle Scholar
  30. 30.
    Ogura K and Uchida H 1987J. Chem. Soc., Dalton. Trans. 1377Google Scholar
  31. 31.
    Ogura K and Tagaki M 1986J. Electroanal. Chem. 206 209CrossRefGoogle Scholar
  32. 32.
    Matsuoka S, Yamamoto K, Ogata T, Kusaba M, Nakashhima N, Fujita E and Yanagida S 1993J. Am. Chem. Soc. 115 601CrossRefGoogle Scholar
  33. 33.
    Ishida H, Tanaka H, Tanaka K and Tanaka T 1987J. Chem. Soc., Chem. Commun. 131Google Scholar
  34. 34.
    Ishida H, Fujiki K, Ohba T, Ohkubo K, Tanaka K, Terada T and Tanaka T 1990J. Chem. Soc., Dalton Trans. 2155Google Scholar
  35. 35.
    Tomohiro T, Uoto K and Okuna H 1990J. Chem. Soc., Chem. Commun. 194Google Scholar
  36. 36.
    Arana C, Yan S, Keshavarz M, Potts K T and Abruna H D 1992Inorg. Chem. 31 3681CrossRefGoogle Scholar
  37. 37.
    Miedaner A, Curtis C J, Barkley R M and DuBois D L 1994Inorg. Chem. 33 5482CrossRefGoogle Scholar
  38. 38.
    Beley M, Collin J P, Ruppert R and Sauvage J P 1986J. Am. Chem. Soc. 108 7461CrossRefGoogle Scholar
  39. 39.
    Collin J P, Jouaiti A and Sauvage J P 1988Inorg. Chem. 27 1986CrossRefGoogle Scholar
  40. 40.
    Petit J P, Chartier P, Beley M and Sauvage J P 1987New J. Chem. 751Google Scholar
  41. 41.
    Pearce D J and Pletcher D 1986J. Electroanal. Chem. 197 317CrossRefGoogle Scholar
  42. 42.
    Fisher B and Eisenberg R 1980J. Am. Chem. Soc. 102 7361CrossRefGoogle Scholar
  43. 43.
    Lovecchio F V, Gore E S and Busch D H 1974J. Am. Chem. Soc. 96 3109CrossRefGoogle Scholar
  44. 44.
    Petit J P, Chartier P, Beley M and Deville J P 1989J. Electroanal. Chem. 269 267CrossRefGoogle Scholar
  45. 45.
    Breikss A and Abruna H D 1986J. Electroanal. Chem. 201 347CrossRefGoogle Scholar
  46. 46.
    Hawecker J, Lehn J M and Ziessel R 1986Helv. Chim. Acta 69 1990CrossRefGoogle Scholar
  47. 47.
    Ragini P V and Vijayaraghavan V R 1995Trans. Soc. Adv. Electrochem. Sci. Technol. 30 116Google Scholar
  48. 48.
    Haynes L V and Sawer D T 1969Anal. Chem. 39 332CrossRefGoogle Scholar
  49. 49.
    Lamy L, Nadjo L and Saveant J-M 1977J. Electroanal. Chem. 78 403CrossRefGoogle Scholar
  50. 50.
    Eggins B R and McNeill J 1983J. Electroanal. Chem. 148 17CrossRefGoogle Scholar
  51. 51.
    Tysee D A, Wagenknecht J H, Baiser M M and Chruma J L 1972Tetrahedron Lett. 4809Google Scholar
  52. 52.
    Gambino S and Silvestri G 1973Tetrahedron Lett. 3025Google Scholar
  53. 53.
    Gressin J C, Michelet D, Nadjo L and Saveant J-M 1979Nouv. J. Chim. 3 545Google Scholar
  54. 54.
    Stephen H and Stephen T (eds) 1963 InSolubilities of inorganic and organic compounds (New York: Macmillan) vol. 1, part 2, 1063Google Scholar
  55. 55.
    Clever H L and Battino R 1975 InSolutions and solubilities (ed.) M R J Cack (New York: Wiley) 386Google Scholar
  56. 56.
    Suh M P, Kang S-G, Goedken V L and Park S 1991Inorg. Chem. 30 365CrossRefGoogle Scholar
  57. 57.
    Suh M P, Shin W, Kang S-G, Lah M S and Chung T-M 1989Inorg. Chem. 28 1602CrossRefGoogle Scholar
  58. 58.
    Grant W M 1948Anal. Chem. 20 267CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2001

Authors and Affiliations

  • M. Aulice Scibioh
    • 1
  • P. V. Ragini
    • 2
  • S. Rani
    • 2
  • V. R. Vijayaraghavan
    • 2
  • B. Viswanathan
    • 1
  1. 1.Kinetics and Catalysis Laboratory, Department of ChemistryIndian Institute of TechnologyChennaiIndia
  2. 2.Department of Physical ChemistryUniversity of MadrasChennaiIndia

Personalised recommendations